Close Window
Aetna.com Home    |     Help    |     Contact Us

Search  
Aetna Aetna
Clinical Policy Bulletin:
Near-Infrared Vascular Imaging
Number: 0846


Policy

Aetna considers the use of near-infrared vascular imaging systems (e.g., AccuVein AV300 or VeinViewer) for guiding vascular access experimental and investigational because their effectiveness has not been established.

 



Background

Peripheral intravenous (PIV) catheter insertion is a common, painful, and sometimes difficult procedure for many infants and children in the pediatric emergency department (ED) because of the small caliber and impalpability of the veins.  Changes in catheter design and adoption of new imaging techniques have been tried to facilitate line placement.  Near-infrared (NIR) imaging is a non-invasive and non-ionizing modality that has been employed to improve the success rate of PIV catheter placement in pediatric patients (e.g., reduce the number of attempts, the number of needle redirections, and the overall time to catheter placement).  The VeinViewer® (Luminetx Corporation, Memphis, TN) is a NIR light device that delineates the running course of subcutaneous veins.

In an observational feasibility study, Cuper et al (2011) evaluated for the first time the value of visualizing veins by a prototype of a NIR vascular imaging system for venipuncture in children.  Participants were children (0 to 6 years) attending the clinical laboratory of a pediatric university hospital during a 2-month period without (n = 80) and subsequently during a 1-month period with a prototype of an NIR vascular imaging system (n = 45).  Failure rate (i.e., more than 1 puncture) and time of needle manipulation were determined.  With the NIR vascular imaging system, failure rate decreased from 10/80 to 1/45 (p = 0.05) and time decreased from 2 seconds (1 to 10) to 1 second (1 to 4, p = 0.07).  The authors concluded that the findings of this study showed promising results on the value of an NIR vascular imaging system in facilitating venipuncture.

Chapman et al (2011) examined the benefit of the VeinViewer, a device that delineates subcutaneous veins using NIR light and video technology, for PIV placement in children in the ED.  A prospective, randomized sample of children aged 0 to 17 years who required a non-emergent PIV in a tertiary care pediatric ED were enrolled in this study.  Subjects were randomized to standard PIV cannulation (SC) or PIV cannulation with the VeinViewer (VV).  The primary outcome measure was time to PIV placement.  Secondary outcome measures included number of PIV attempts and pain scores as reported by the child, parent or guardian, and nurse using a 100-mm visual analog scale (VAS).  A total of 323 patients completed the study: 174 boys and 149 girls.  Age, sex, and body mass index (BMI) were not different between groups.  There were no differences in time to PIV placement, number of PIV attempts, or pain scores for the overall study group.  However, a planned subgroup analysis of children age 0 to 2 years (n = 107) did yield significant results for the geometric mean time to place the PIV (121 seconds [VV] versus 167 seconds [SC], p = 0.047) and for nurses' perception of pain (median VAS 34 [VV] versus 46 [SC], p = 0.01).  The authors concluded that while no results were significant for the overall study group, subgroup analysis of children age 0 to 2 years suggested that the VeinViewer may decrease the time to PIV placement.

In a randomized controlled trial, Perry et al (2011) examined if the use of a NIR light venipuncture aid (VeinViewer) would improve the rate of successful first-attempt placement of IV catheters in a high-volume pediatric ED.  Patients younger than 20 years with standard clinical indications for IV access were randomized to have IV placement by ED nurses (in 3 groups stratified by 5-year blocks of nursing experience) using traditional methods (standard group) or with the aid of the VeinViewer (device group).  If a vein could not be cannulated after 3 attempts, patients crossed-over from one study arm to the other, and study nurses attempted placement with the alternative technique.  The primary end point was first-attempt success rate for IV catheter placement.  After completion of patient enrollment, a questionnaire was completed by study nurses as a qualitative assessment of the device.  A total of 123 patients (median age of 3 years) were included in the study: 62 in the standard group and 61 in the device group.  There was no significant difference in first-attempt success rate between the standard (79.0 %, 95 % confidence interval [CI]: 66.8 % to 88.3 %) and device (72.1 %, 95 % CI: 59.2 % to 82.9 %) groups.  Of the 19 study nurses, 14 completed the questionnaire; 70 % expressed neutral or unfavorable assessments of the device in non-dehydrated patients without chronic underlying medical conditions and 90 % found the device a helpful tool for patients in whom IV access was difficult.  The authors concluded that first-attempt success rate for IV placement was non-significantly higher without than with the assistance of the VeinViewer in a high-volume pediatric ED.  They noted that nurses placing IVs did report several benefits to use of the device with specific patient groups, and future research should be carried out to demonstrate the role of the VeinViewer in these patients.

In a randomized controlled trial, Kim et al (2012) examined if the use of the VeinViewer in infants and children facilitated peripheral venous access, especially in difficult cases.  Pediatric patients between the ages of 1 month and 16 years who required peripheral venous access in the pediatric ward were included in this study.  Prior to randomization, difficult intravenous access (DIVA) score, a 4-variable clinical prediction rule for first-attempt success, was estimated.  These investigators compared the first-attempt success rates and procedural times between the VeinViewer group and a control group.  They evaluated 111 patients: 54 in the VeinViewer group and 57 in the control group.  Patient demographics and factors related to the success of vein access were similar for both groups.  The overall first-attempt success rate was 69.4 % (77/111) in the VeinViewer group and 66.7 % (38/57) in the control group, a difference that was not statistically significant.  However, the first-attempt success rate increased from (25 %) 5/20 in the control group to (58 %) 14/24 in the VeinViewer group for difficult veins with a DIVA score greater than 4 (p = 0.026).  There were no significant differences in procedural time between the two groups.  The authors concluded that the VeinViewer facilitated peripheral venous access for pediatric patients with difficult veins, which enhanced first-attempt success rates.

The AccuVein AV300 device was developed to assist venipuncture and IV cannulation by enhancing the visibility of superficial veins.  It uses infrared light to highlight hemoglobin so that blood vessels are darkly delineated against a red background.

Sanchez-Morago et al (2010) stated that despite major advances that have occurred in medicine and biotechnology in recent years, advances to locate veins have been very limited.  The AccuVein AV300 is a portable manual instrument that enables nurses to locate certain peripheral veins.  This device does not substitute a nurse's traditional skill in locating veins by visual or feeling means, but rather this device supplements their skills and enhances them.  This device is lightweight, intuitive, and does not require previous training for its use and hygiene since it never enters into contact with a patient's skin as it emits an infrared light on the skin, which reflects veins drawing them on the surface of the skin.

Kaddoum et al (2012) evaluated the effectiveness of the AccuVein AV300 in improving the first-time success rate of IV cannulation of anesthetized pediatric patients.  Participants were randomized to cannulation with the AccuVein AV300 or standard insertion by experienced pediatric anesthesiologists.  An observer recorded the number of skin punctures and cannulation attempts required, and the time between tourniquet application and successful cannulation or 4 skin punctures, whichever came first.  There were 146 patients with a median age of 4.6 years (range of 0.18 to 17.1 years), 46.6 % were males, 80.8 % were light skin colored, and 15.7 % were younger than 2 years.  The first-attempt success rates were 75 % (95 % CI: 63.8 to 84.2 %) using AV300 and 73 % (95 % CI: 61.9 to 81.9 %) using the standard method (p = 0.85).  Patients with dark or medium skin color were 0.38 times less likely to have a successful first-attempt than patients with light skin color.  The difference between the 2 treatment groups in number of skin punctures and the time to insertion was not significant.  Although the AV300 was easy to use and improved visualization of the veins, the authors found no evidence that it was superior to the standard method of IV cannulation in unselected pediatric patients under anesthesia.

In summary, there is currently insufficient evidence on the effectiveness of near-infrared vascular imaging for guiding vascular access.  Well-designed studies are needed to validate these preliminary findings.

 
CPT Codes / HCPCS Codes / ICD-9 Codes
Near-infrared vascular imaging systems (e.g., AccuVein AV300 or VeinViewer) for guiding vascular access :
No specific code


The above policy is based on the following references:
  1. Sanchez-Morago GV, Sanchez Coello MD, Villafranca Casanoves A, et al. Viewing veins with AccuVein AV300. Rev Enferm. 2010;33(1):33-38.
  2. Cuper NJ, Verdaasdonk RM, de Roode R, et al. Visualizing veins with near-infrared light to facilitate blood withdrawal in children. Clin Pediatr (Phila). 2011;50(6):508-512.
  3. Chapman LL, Sullivan B, Pacheco AL, et al. VeinViewer-assisted Intravenous catheter placement in a pediatric emergency department. Acad Emerg Med. 2011;18(9):966-971.
  4. Perry AM, Caviness AC, Hsu DC. Efficacy of a near-infrared light device in pediatric intravenous cannulation: A randomized controlled trial. Pediatr Emerg Care. 2011;27(1):5-10.
  5. Kim MJ, Park JM, Rhee N, et al. Efficacy of VeinViewer in pediatric peripheral intravenous access: A randomized controlled trial. Eur J Pediatr. 2012;171(7):1121-1125.
  6. Kaddoum RN, Anghelescu DL, Parish ME, et al. A randomized controlled trial comparing the AccuVein AV300 device to standard insertion technique for intravenous cannulation of anesthetized children. Paediatr Anaesth. 2012;22(9):884-889.


email this page   


Copyright Aetna Inc. All rights reserved. Clinical Policy Bulletins are developed by Aetna to assist in administering plan benefits and constitute neither offers of coverage nor medical advice. This Clinical Policy Bulletin contains only a partial, general description of plan or program benefits and does not constitute a contract. Aetna does not provide health care services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Aetna or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. This Clinical Policy Bulletin may be updated and therefore is subject to change.
Aetna
Back to top