Close Window
Aetna Aetna
Clinical Policy Bulletin:
Implantable Left Atrial Hemodynamic Monitor
Number: 0832


Policy

Aetna considers implantable left atrial hemodynamic monitors (e.g., the HeartPOD System and the Promote LAP System) experimental and investigational due to insufficient evidence in the peer-reviewed literature.



Background

The Heart Failure Society of America (2010) defines heart failure as "a syndrome caused by cardiac dysfunction, generally resulting from myocardial muscle dysfunction or loss and characterized by either left ventricular (LV) dilation or hypertrophy or both."  Heart failure is a major public health problem that affects nearly 6 million Americans each year (Roger et al, 2011).  Heart failure (HF) is the cause for 12 to 15 million office visits and 6.5 million hospital days per year and can result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood (Hunt et al, 2009).  Morbidity and mortality from HF remains high despite advances in evaluation and management with rehospitalization rates of 20% at one month and nearly 50% at 6 months (Ritzema et al, 2010).  Bui et al (2012) state that the majority of these HF hospitalizations result from worsening congestion in patients previously diagnosed with HF.  Arenja et al (2011) prospectively enrolled 610 consecutive patients presenting to the emergency department with acute HF and followed them for 1 year to determine risk stratification for mortality; a total of 201 patients (33%) died within 360 days and the investigators' analysis identified blood urea nitrogen and age as the best single predictors of 1-year mortality.

Kommuri et al (2012) studied the impact of prior HF hospitalizations on long-term mortality in 2,221 HF patients in a prospective cohort study.  They found that in otherwise "low-risk" HF inpatients, a history of 2 or more HF hospitalizations within the prior 12 months markedly increases 1-year mortality risk.  Bui et al (2012) report that "earlier identification and treatment of congestion together with improved care coordination, management of comorbid conditions, and enhanced patient self-management may help to prevent hospitalizations in patients with chronic HF. Such home monitoring extends from the promotion of self-care and home visitations to telemedicine and remote monitoring of external or implantable devices." 

Giordano et al (2011) enrolled 358 HF patients in a 6 month home-based telemanagement (HBT) program and observed that on re-evaluation after 6 months (238 patients) there was a general improvement in clinical, functional, and quality of life (QoL) status and a significant increase in the mean daily dosage of beta-blockers prescribed. Although Giordano et al (2011) concluded that HBT for patients with congestive HF is associated with favorable effects on hospital readmission for cardiovascular reasons and on QoL, they also noted that a more comprehensive multidisciplinary approach would probably be required to obtain favorable effects on total morbidity.

Recent research has focused on the use of ambulatory hemodynamic monitoring in chronic HF patients and continuous implantable hemodynamic monitoring devices have been introduced as a potential means to improve outcomes in these patients.  The American College of Cardiology/American Heart Association Guidelines for the Diagnosis and Management of Heart Failure in Adults state that implantable hemodynamic monitors used for the chronic, remote, outpatient monitoring of ventricular filling pressures and other hemodynamic and clinical variables in HF patients are hypothesized to be of benefit as changes in therapy to optimize LV filling pressure may improve outcomes in HF patients (Hunt et al, 2009).  One such device used to measure left atrial pressure (LAP) is the HeartPod® system (St Jude Medical, CRMD, Sylmar, CA), which consists of an implantable sensor lead and coil antenna; the sensor module is affixed to the atrial septum by proximal and distal folding nitinol.  The implantation procedure is conducted through performing a right heart catherization with a Swan Ganz catheter.  After removing the delivery sheath, the proximal lead connector is affixed to the antenna and placed in a subcutaneous pocket anchors (Troughton et al, 2010).  Troughton et al. (2010) state that the handheld Patient Advisor Module device, which is used to interrogate the sensor by placing the module in proximity to the device, uses a standard algorithm to compute mean LAP.

The first reported study of an implantable left atrial hemodynamic monitor was conducted by Ritzema et al. (2007) in eight male patients with established heart failure and at least 1 heart failure hospitalization or unplanned outpatient visit for parenteral therapy during the previous 12 months.   The eight subjects from this single center were enrolled in a prospective, multicenter, nonrandomized, open-label feasibility clinical trial called the Hemodynamically Guided Home Self-Therapy in Severe Heart Failure Patients (HOMEOSTASIS I).  The LAP hemodynamic monitor device (HeartPOD®) was implanted in all patients without device related complications or systemic emboli.  The device consisted of an implantable sensor lead coupled with a subcutaneous antenna coil, a patient advisory module (PAM), and the clinician’s personal computer software.  The sensor system was implanted into the atrial septum oriented to the left atrium.  Twelve-weeks post implantation 87% of device LAP measurements were within + / - 5 mm Hg of simultaneous pulmonary capillary wedge pressure readings over a wide range of pressures (1.6 to 71 mm Hg). Net drift corrected by calibration was -0.2 + / - 1.9 mm Hg.  The authors concluded that although ambulatory monitoring of direct LAP was well tolerated, feasible, and accurate at a short-term follow-up, further follow-up and investigation were warranted to evaluate the clinical utility of LAP monitoring in patients with heart failure.

The COMPASS-HF (Chronicle Offers Management to Patients with Advanced Signs and Symptoms of Heart Failure) study was conducted by Bourge et al. (2008)  COMPASS-HF was a prospective, multicenter, randomized, single-blind, parallel-controlled trial of 274 New York Heart Association functional class III or IV HF patients who received an implantable continuous hemodynamic monitor. Patients were randomized to a Chronicle implantable continuous hemodynamic monitoring device (Medtronic Inc., Minneapolis, MN) (n = 134) or a control group (n = 140).  The investigators concluded that, compared with control patients, the Chronicle group had a nonsignificant 21% reduction (p = 0.33) in the rate of all HF-related events and a 36% reduction (p = 0.03) in the relative risk of a first HF-related hospitalization. The investigators therefore recommended that additional trials be conducted to establish the clinical benefit of implantable continuous hemodynamic monitor–guided care in patients with advanced HF.

Ritzema et al. (2010) conducted a physician-directed patient self-management of left atrial pressure in advanced chronic heart failure study in forty patients with reduced or preserved left ventricular ejection fraction and acute decompensation.  All enrolled patients were implanted with an investigational left atrial pressure monitor.  Event-free survival was determined over a median follow-up period of 25 months.  Survival without decompensation was 1% at 3 years and events decreased in frequency at the first 3 months following implantation (p < 0.012).  Mean daily left arterial pressure fell from 17.6 mm Hg during the first 3 months to 14.8 mm during pressure-guided therapy (p = 0.003). There were statistically significant improvements in NYHA class (p < 0.001) and left ventricular ejection fraction (p < 0.001).  The authors concluded that physician-directed patient self-management of left atrial pressure has the potential to improve hemodynamic, symptoms, and outcomes in advanced heart failure.  The authors also acknowledge, however, that this was a small observational study and that these results suggest that outpatient hemodynamic monitoring linked to a self-management therapeutic strategy could change current management of advanced heart failure and potentially facilitate more optimal therapy and improved outcomes.

Troughton et al (2010) evaluated the HeartPOD® left atrial hemodynamic monitoring system in 84 advanced HF patients.  The investigators conducted a prospective, multicenter, observational open-label registry study the results of which showed that comparisons of LAP with pulmonary capillary wedge pressure (PCWP) generally showed a high degree of concordance.  The implanted left atrial monitor measurement of LAP differed from PCWP by > 5 mmHg in 20% of readings.  However, the authors stated that these disagreements were likely miscalibration of the Swan Ganz catheter, the implanted LAP sensor, or both.  Freedom from device failure was 95% at 2 years and 88% at 4 years.  There were no instances of device failure or anomaly associated with clinical worsening.  The authors concluded that high-fidelity LAP measurements were accurate and closely predicted PCWP over a 12-month period. 

St Jude Medical is currently sponsoring a Phase III randomized, open label trial of the HeartPOD™ System or Promote® LAP System.  This trial is currently recruiting participants and the primary outcome measures will be safety and efficacy.  Safety will be demonstrated by evaluating the freedom from study-related major adverse cardiovascular and neurological events (MACNE) following twelve months of treatment. Effectiveness will be determined by evaluating the reduction in the relative risk of Heart Failure MACNE between the Treatment and Control groups (St. Jude Medical, 2011). The HeartPOD® and Promote® LAP System have not to date received approval for use in the United States by the Food and Drug Administration. 

Walton and Krum (2005) stated that congestive HF (CHF) has been described as the new epidemic.  Despite recent improvements in drug therapy, a 2-year mortality of up to 50 % persists.  There are limitations to the current drug treatments and cardiac resynchronization devices.  The treatment of diastolic dysfunction can be suboptimal.  The Savacor Company developed the HeartPOD device to directly measure LAP in patients with CHF via an implantable device.  The patient can in real time, download their intra-cardiac pressure measurements to a hand-held device.  With this information, they can titrate their own treatment in a very precise manner.

The HeartPOD System (Savacor Inc., Los Angeles, CA) is used for patients with ischemic or non-ischemic cardiomyopathy with systolic or diastolic dysfunction for at least 6 months or HF classified by NYHA class III.  The HeartPOD system is a standalone device for use in patients not requiring implantable cardioverter defibrillator (ICD) or cardiac resynchronization therapy defibrillator (CRT-D) therapy, or who already received ICD or CRT-D therapy.  The system monitors LAP with a permanently implantable sensory sensor used in ambulatory patients with HF.  These implanted intra-cardiac sensors allow the patient to directly monitor LAP, the intra-cardiac electrogram, and core body temperature.  The implant's readings are communicated with a hand-held computer.  The information is used to adjust medications on a dose-by-dose basis according to the physician's prescriptive instructions.  The HeartPOD System is not available for commercial use in the United States. 

The Promote LAP System (St. Jude Medical, Inc., St. Paul, MN) is used for patients with ischemic or non-ischemic cardiomyopathy and class III HF.  It is a combinational device for patients who require ICD or CRT-D therapy in addition to LAP monitoring.  This device is not available for commercial use in the United States. 

There is currently a clinical trial on “Left Atrial Pressure Monitoring to Optimize Heart Failure Therapy (LAPTOP-HF)” that is currently recruiting subjects (estimated enrollment = 730; study start date was April 2010).  Devices used are the HeartPOD System or the Promote LAP System (last verified December 2012).  http://www.clinicaltrials.gov/ct2/show/NCT01121107?term=the+Promote+LAP+System&rank=1.

Abraham (2013) stated that HF represents a major public health concern, associated with high rates of morbidity and mortality.  A particular focus of contemporary HF management is reduction of hospital admission and re-admission rates.  While optimal medical therapy favorably impacts the natural history of the disease, devices such as CRT devices and ICDs have added incremental value in improving HF outcomes.  These devices also enable remote patient monitoring via device-based diagnostics.  Device-based measurement of physiological parameters, such as intra-thoracic impedance and heart rate variability, provide a means to assess risk of worsening HF and the possibility of future hospitalization.  Beyond this capability, implantable hemodynamic monitors have the potential to direct day-to-day management of HF patients to significantly reduce hospitalization rates.  The use of a pulmonary artery pressure measurement system has been shown to significantly reduce the risk of HF hospitalization in a large randomized controlled study, the CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients (CHAMPION) trial.  Observations from a pilot study also supported the potential use of a left atrial pressure monitoring system and physician-directed patient self-management paradigm; these observations are under further investigation in the ongoing LAPTOP-HF trial.  

 
CPT Codes / HCPCS Codes / ICD-9 Codes
CPT codes not covered for indications listed in the CPB:
0293T Insertion of left atrial hemodynamic monitor; complete system, includes implanted communication module and pressure sensor lead in left atrium including transseptal access, radiological supervision and interpretation, and associated injection procedures, when performed
0294T Insertion of left atrial hemodynamic monitor; pressure sensor lead at time of insertion of pacing cardioverter-defibrillator pulse generator including radiological supervision and interpretation and associated injection procedures, when performed (list separately in addition to code for primary procedure)
ICD-9 codes not covered for indications listed in the CPB:
428.0 - 428.9 Heart failure


The above policy is based on the following references:
  1. Ritzema J, Melton IC, Richards AM, et al. Direct left atrial pressure monitoring in ambulatory heart failure patients: Initial experience with a new permanent implantable device. Circulation. 2007;116(25):2952-2959.
  2. Bourge RC, Abraham WT, Adamson PB  e al, on behalf of the COMPASS-HF Study Group. Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: The COMPASS-HF Study. J Am Coll Card. 2008;51 (11):1073-1079. 
  3. Hunt SA, Abraham WT, Chin MH, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119(14):e391-e479.
  4. Ritzema J, Troughton R, Melton I, et al; Hemodynamically Guided Home Self-Therapy in Severe Heart Failure Patients (HOMEOSTASIS) Study Group. Physician-directed patient self-management of left atrial pressure in advanced chronic heart failure. Circulation. 2010;121(9):1086-1095.
  5. Lindenfeld J, Albert NM, Boehmer JP, et al. Managing patients with hypertension and heart failure: HFSA 2010 comprehensive heart failure practice guideline. J Card Fail. 2010;16(6):e166-e168.
  6. Troughton RW, Ritzema J, Eigler NL, et al; HOMEOSTASIS Investigators. Direct left atrial pressure monitoring in severe heart failure: Long-term sensor performance. J Cardiovasc Transl Res. 2011;4(1):3-13.
  7. U.S. National Institutes of Health (NIH), National Library of Medicine. Left atrial pressure monitoring to optimize heart failure therapy (LAPTOP-HF). ClinicalTrials.gov Identifier: NCT01121107. Bethesda, MD: NIH; updated: August 26, 2011. Available at:  http://www.clinicaltrials.gov/ct2/show/NCT01121107?term=implantable+left+atrial+hemodynamic+monitor&rank=1. Accessed March 30, 2012.
  8. Roger VL, Go AS, Lloyd-Jones D, et al. Heart disease and stroke statistics -- 2011 update: A report from the American Heart Association. Circulation. 2011;123(4):e114-e118.
  9. Giordano A, Zanelli E, Scalvini S. Home-based telemanagement in chronic heart failure: An 8-year single-site experience. J Telemed Telecare. 2011;17(7):382-386.
  10. Arenja N, Breidthardt T, Socrates T, et al. Risk stratification for 1-year mortality in acute heart failure: Classification and regression tree analysis. Swiss Med Wkly. 2011;141:w13259.
  11. Bui AL, Fonarow GC. Home monitoring for heart failure management. J Am Coll Cardiol. 2012;59(2):97-104.
  12. Ibrahim M, Rao C, Athanasiou T, et al. Mechanical unloading and cell therapy have a synergistic role in the recovery and regeneration of the failing heart. Eur J Cardiothorac Surg. 2012;42(2):312-318.
  13. Kommuri NV, Koelling TM, Hummel SL. The impact of prior heart failure hospitalizations on long-term mortality differs by baseline risk of death. Am J Med. 2012;125(2):209.e9-209.e15.
  14. Walton AS, Krum H. The Heartpod implantable heart failure therapy system. Heart Lung Circ. 2005;14 Suppl 2:S31-S33.
  15. Abraham WT. Disease management: Remote monitoring in heart failure patients with implantable defibrillators, resynchronization devices, and haemodynamic monitors. Europace. 2013;15 Suppl 1:i40-i46.


email this page   


Copyright Aetna Inc. All rights reserved. Clinical Policy Bulletins are developed by Aetna to assist in administering plan benefits and constitute neither offers of coverage nor medical advice. This Clinical Policy Bulletin contains only a partial, general description of plan or program benefits and does not constitute a contract. Aetna does not provide health care services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Aetna or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. This Clinical Policy Bulletin may be updated and therefore is subject to change.
Aetna
Back to top