Close Window
Aetna Aetna
Clinical Policy Bulletin:
Internal Fixation of Rib Fracture
Number: 0822


Policy

Aetna considers the use of the following internal rib fixation systems in the treatment of rib fractures experimental and investigational because of insufficient evidence of effectiveness in the peer-reviewed literature:

  • MatrixRIB fixation system
  • Modular ribloc system.

See also CPB 0582 - Titanium Rib.



Background

Most injuries to the chest wall do not result in long-term respiratory dysfunction and operative indications for chest wall injuries are rare.  Recent studies have explored the option of internal fixation of rib fracture for treatment of complex rib fractures, including flail chest, open fracture, symptomatic nonunion, and thoracotomy for other indications (Lafferty et al, 2011).  Flail chest is diagnosed when multiple, consecutive ribs are fractured in two or more places, creating an incompetent region of the chest wall (Slater et al, 2001).

A number of small scale studies have evaluated the use of internal fixation of rib fractures.  Lardinois et al (2001) prospectively evaluated chest wall integrity and pulmonary function following operative stabilization of flail chest.  They followed 66 patients with antero-lateral flail chest.  Forty-seven percent of patients were able to be extubated immediately following the procedure and 85 % within 7 days post-operatively.   Pulmonary function testing and clinical assessment were performed 6 months post-operatively.  The results showed that the 30-day mortality was at 11 % and chest wall complains were noted in 6 of 57 patients, requiring removal of all plates and screws in 3 of those patients.  Six month follow-up results also showed a significant difference between predicted and recorded vital capacity (p = 0.04) and forced expiratory volume (p = 0.001).  The investigators concluded that antero-lateral flail chest injuries accompanied by respiratory insufficiency, particularly when stabilized early, may be cost effective in that they reduce days on mechanical ventilation and restriction-related working incapacity.

Tanaka et al (2002) conducted a prospective randomized trial of 37 severe flail chest patients requiring mechanical ventilation, comparing the relative clinical efficacy of surgical stabilization (S group) and internal pneumatic stabilization (I group).  The authors reported that “the S group showed a shorter ventilatory period (10.8 +/- 3.4 days) than the I group (18.3 +/- 7.4 days) (p < 0.05), shorter intensive care unit stay (S group, 16.5 +/- 7.4 days; I group, 26.8 +/- 13.2 days; p < 0.05), and lower incidence of pneumonia (S group, 24 %; I group, 77 %; p < 0.05).  Percent forced vital capacity was higher in the S group at 1 month and thereafter (p < 0.05).”  Although the findings of this study are encouraging, the relatively small sample size and the specificity of the inclusion criteria must be taken into account when attempting to generalize these findings.

Nirula et al (2006) conducted a matched case-control study to evaluate the impact of operative stabilization of rib fractures due to trauma.  Thirty patients undergoing rib stabilization were matched with 30 controls and followed for length of intensive care unit stay (controls, 14.1 +/- 2.7 vs cases, 12.1 +/- 1.2, p = 0.51), total hospital stay (controls, 21.1 +/- 3.9 vs cases, 18.8 +/- 1.8, p = 0.59), total ventilator days (cases, 6.5 +/- 1.3 days versus controls, 11.2 +/- 2.6 days, p = 0.12), and ventilator days post-stabilization (cases,  2.9 +/- 0.6 days versus controls, 9.4 +/- 2.7 days, p = 0.02).  The investigators concluded that rib fracture fixation may reduce ventilator requirements in trauma patients with severe thoracic injuries, but long-term functional outcomes need to be assessed to ascertain the impact of this procedure.

Richardson et al (2007) performed open reduction and internal fixation on 7 patients using titanium plates and screws.  The investigators reported that "there was one death in the sternal fracture group in a patient who was ventilator-dependent preoperatively and extubated himself in the early postoperative period.  Otherwise, the results were excellent, with no complications occurring in this group.".  However, there are limitations to the degree to which findings can be extrapolated given the sample size of 7 patients. 

Campbell et al (2009) reported on open reduction and internal fixation using Inion OTPS wraps for treatment of rib fractures for 32 Parkinson’s disease patients with osteoporotic thoracolumbar compression fracture.  Would infection occurred in 19 % of patients, chest wall stiffness in 60 %, dyspnea at rest in 20 %, and nonunion of fracture occurred in 1 patient.  The authors reported patient satisfaction with the procedure was at 100 % and that the procedure allowed for excellent stabilization of the ribs in both ambulatory and ventilated patients.  However, it should be noted that there was a small sample size and relatively high complication rate, although this patient population was one with significant co-morbidity.

Mayberry et al (2009) conducted a survey of members of the Eastern Association for the Surgery of Trauma, the Orthopedic Trauma Association, and thoracic surgeons affiliated with teaching hospitals in the United States and received surveys from 238 trauma surgeons (TRS), 97 orthopedic trauma surgeons (OTS) and 70 thoracic surgeons (THS).  Although 82 % of TRS, 66 % of OTS, and 71 % of THS thought that rib fracture repair was indicated in selected patients, only 26 % of surgeons reported that they had performed or assisted on a chest wall fracture repair, whereas 22 % of surgeons were familiar with published randomized trials of the surgical repair of flail chest.  Mayberry et al (2009) concluded that “the published literature on surgical repair is sparse and unfamiliar to most surgeons.  Barriers to surgical repair of rib and sternal fracture include a lack of expertise among TRS, lack of research of optimal techniques, and a dearth of randomized trials.”

Marasco et al (2009) had conducted a pilot study of operative fixation of fractured ribs in 13 flail chest patients, requiring on average 4 ribs fixed.  Positive results were achieved in all patients with the flail chest stabilized and paradoxical chest wall movement eliminated.  Based on the findings of this pilot study, a prospective randomized trial is currently underway.  Marasco et al (2010) explored the operative stabilization of rib fracture in 13 patients who had 58 ribs fixed with absorbable prostheses, of which 10 rib fixations failed.  The investigators observed that stresses on the plate differed between inspiration and expiration, with greater stress on the screws on the posterior part of the broken rib, and separation of the plate from the rib seemed more likely to occur at this site.

In September of 2008 the Food and Drug Administration granted 510K clearance to Synthes (West Chester, PA) for the Synthes MatrixRIB Fixation System for the fixation and stabilization of rib fractures, fusions and osteotomies of normal and osteoporotic bone (FDA, 2008).   The Synthes MatrixRIB Fixation System is indicated for the fixation and stabilization of rib fractures, fusions and osteotomies of normal and osteoporotic bone.  The system consists of bone plates, intra-medullary (IM) splints and screws.  All plates, IM splints and screws are manufactured from titanium alloy.

The current practice management guideline for pulmonary contusion - flail chest, issued by the Eastern Association for the Surgery of Trauma, states that surgical fixation may be considered in severe unilateral flail chest or in patients requiring mechanical ventilation when thoracotomy is otherwise required (Simon et al, 2006).  However, this guideline is listed as a Level 3 recommendation, indicating that “the recommendation is supported by available data but adequate scientific evidence is lacking … This type of recommendation is useful for educational purposes and in guiding future clinical research”.

Bottlang et al (2013) stated that surgical stabilization of flail chest injury with generic osteosynthesis implants remains challenging.  A novel implant system comprising anatomic rib plates and intramedullary splints may improve surgical stabilization of flail chest injuries.  In an observational study, these investigators evaluated the early clinical experience with this novel implant system to document if it can simplify the surgical procedure while providing reliable stabilization.  A total of 20 consecutive patients who underwent stabilization of flail chest injury with anatomic plates and intramedullary splints were prospectively enrolled at 2 Level I trauma centers.  Data collection included patient demographics, injury characterization, surgical procedure details and post-operative recovery.  Follow-up was performed at 3 and 6 months to assess pulmonary function, durability of implants and fixation and patient health.  Patients had an Injury Severity Score of 28 ± 10, a chest Abbreviated Injury Score of 4.2 ± 0.4 and 8.5 ± 2.9 fractured ribs.  Surgical stabilization was achieved on average with 5 plates and 1 splint.  Intra-operative contouring was required in 14 % of plates.  Post-operative duration of ventilation was 6.4 ± 8.6 days.  Total hospitalization was 15 ± 10 days.  At 3 months, patients had regained 84 % of their expected forced vital capacity (% FVC).  At 6 months, 7 of 15 patients who completed follow-up had returned to work; there was no mortality.  Among the 91 rib plates, 15 splints and 605 screws in this study there was no hard-ware failure and no loss of initial fixation.  There was one incidence of wound infection; implants were removed in 1 patient after fractures had healed.  The authors concluded that anatomic plates eliminated the need for extensive intra-operative plate contouring.  Intramedullary rib splints provided a less-invasive fixation alternative for single, non-comminuted fractures.  These early clinical results indicated that the novel implant system provided reliable fixation and accommodated the wide range of fractures encountered in flail chest injury.  These early findings from a small observational study need to be validated by well-designed studies.

The Modular RibLoc System (ACUTE Innovations, LLC; Hillsboro, OR) was cleared by the FDA through the 510 (k) process in January 2012; it is indicated to stabilize and provide fixation for fractures, fusions, and osteotomies of the ribs, and for reconstructions of the chest wall and sternum.  The Modular RibLoc System consists of plates and screws for fractures, fusions, and osteotomies.  The plates are pre-contoured to minimize bending that is done intra-operatively.  Instrumentation is supplied with the implants to aid in the insertion of the plates and screws.  All plates and screws are manufactured from titanium or titanium alloy.  Large-scale, well-designed studies of this system need to be completed to evaluate the evidence-base for use of this system.

 
CPT Codes / HCPCS Codes / ICD-9 Codes
CPT codes not covered for indications listed in the CPB:
0245T
0246T
0247T
0248T
ICD-9 codes not covered for indications listed in the CPB:
807.00 - 807.09 Fracture of rib(s) closed
807.10 - 807.19 Fracture of rib(s) open
Other ICD-9 codes related to the CPB:
738.3 Acquired deformity of chest and rib
756.3 Other anomalies of ribs and sternum


The above policy is based on the following references:
  1. Slater MS, Mayberry JC, Trunkey DD. Operative stabilization of a flail chest six years after injury. Ann Thorac Surg. 2001;72:600-601.
  2. Lardinois D, Krueger T, Dusmet M, et al. Pulmonary function testing after operative stabilisation of the chest wall for flail chest. Eur J Cardiothorac Surg. 2001;20(3):496-501.
  3. Tanaka H, Yukioka T, Yamaguti Y, et al. Surgical stabilization of internal pneumatic stabilization? A prospective randomized study of management of severe flail chest patients. J Trauma. 2002;52(4):727-732.
  4. Nirula R, Allen B, Layman R, Somberg LB. Rib fracture stabilization in patients sustaining blunt chest injury.  Am Surg. 2006;72(4):307-309.
  5. Simon B, Ebert J, Bokhari F, et al. Practice management guideline for "pulmonary contusion - flail chest". Eastern Association for the Surgery of Trauma (EAST). 2006. Retrieved from: http://www.guideline.gov/content.aspx?id=10167&search=rib+fracture. Accessed: September 21, 2011.
  6. Richardson JD, Franklin GA, Heffley S, Seligson D. Operative fixation of chest wall fractures: An underused procedure? Am Surg. 2007;73(6):591-596.
  7. U.S. Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH). 510K Summary: Synthes USA, K081623. Rockville, MD: FDA; September 8, 2008. Available at: http://www.accessdata.fda.gov/cdrh_docs/pdf8/K081623.pdf. Accessed: September 28, 2011.
  8. Mayberry JC, Ham LB, Schipper PH, et al. Surveyed opinion of American trauma, orthopedic, and thoracic surgeons on rib and sternal fracture repair. J Trauma. 2009;66(3):875-879.
  9. Campbell N, Conaglen P, Martin K, Antippa P. Surgical stabilization of rib fractures using Inion OTPS wraps -- techniques and quality of life follow-up. J Trauma. 2009;67(3):596-601.
  10. Marasco S, Cooper J, Pick A, Kossmann T. Pilot study of operative fixation of fractured ribs in patients with flail chest. ANZ J Surg. 2009;79(11):804-808.
  11. Marasco SF, Sutalo ID, Bui AV. Mode of failure of rib fixation with absorbable plates: A clinical and numerical modeling study. J Trauma. 2010;68(5):1225-1233.
  12. Lafferty PM, Anavian J, Will RE, Cole PA. Operative treatment of chest wall injuries: Indications, technique, and outcomes. J Bone Joint Surg Am. 2011;93(1):97-110.
  13. Bottlang M, Long WB, Phelan D, et al. Surgical stabilization of flail chest injuries with MatrixRIB implants: A prospective observational study. Injury. 2013;44(2):232-238.
  14. U.S. Food and Drug Administration (FDA), Center for Devices and Radiologic Health (CDRH). ACUTE Innovations Modular RibLoc Fixation Systems. 510(k) no. K113318. Rockville, MD: FDA; Nov 9, 2011.


email this page   


Copyright Aetna Inc. All rights reserved. Clinical Policy Bulletins are developed by Aetna to assist in administering plan benefits and constitute neither offers of coverage nor medical advice. This Clinical Policy Bulletin contains only a partial, general description of plan or program benefits and does not constitute a contract. Aetna does not provide health care services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Aetna or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. This Clinical Policy Bulletin may be updated and therefore is subject to change.
Aetna
Back to top