Close Window
Aetna Aetna
Clinical Policy Bulletin:
Ankle Orthoses, Ankle-Foot Orthoses (AFOs), and Knee-Ankle-Foot Orthoses (KAFOs)
Number: 0565


Policy

Aetna considers ankle orthoses, ankle-foot orthoses (AFOs), and knee-ankle-foot orthoses (KAFOs) medically necessary durable medical equipment (DME) according to the criteria set forth below.  (See background section of this clinical policy bulletin (CPB) for descriptions of the orthotics discussed in this policy).

  1. Ankle Orthotics

    Aetna considers ankle orthoses medically necessary DME for members who meet the criteria set forth below.  (See background section of CPB for descriptions of each of these orthotics).

    1. Ankle air-stirrups: Ankle air-stirrups (e.g., Air Cast) are considered medically necessary DME when used after an ankle injury (fractures or sprains).  Air-stirrups are considered experimental and investigational for chronically unstable ankles or to prevent ankle re-injury because of a lack of adequate evidence of the effectiveness of ankle air-stirrups for these indications.  See CPB 0009 - Orthopedic Casts, Braces, and Splints.
    2. Elastic ankle sleeves: Aetna considers reusable elastic ankle sleeves medically necessary DME for use to treat an ankle injury (acute and rehabilitative stages).  Use of elastic ankle sleeves in a chronically unstable ankle or to prevent ankle re-injury is considered experimental and investigational because of a lack of adequate evidence of the effectiveness of elastic ankle sleeves for these indications.
    3. Lace-up ankle braces: Lace-up ankle braces are considered medically necessary DME when used in members with ankle injuries, when used in members with chronically unstable ankles, or when used to prevent ankle re-injury.
    4. Orthopedic ankle cast-braces: Orthopedic ankle cast-braces are considered medically necessary DME when used after an ankle injury (fractures or sprains).  See CPB 0009 - Orthopedic Casts, Braces, and Splints.
    5. Orthoplast ankle stirrups: Orthoplast ankle stirrups are considered medically necessary DME for use after an acute injury.  Use of orthoplast ankle stirrups in chronically unstable ankles or to prevent ankle re-injury is considered experimental and investigational because of a lack of adequate evidence of the effectiveness of orthoplast ankle stirrups for these indications.
    6. Post-operative rehabilitative ankle braces: Aetna considers post-operative rehabilitation ankle braces medically necessary when applied within 6 weeks of surgery. Such post-operative rehabilitative braces are considered an integral part of surgery.  See also CPB 0009 - Orthopedic Casts, Braces, and Splints.
    7. Rigid ankle casts: Rigid ankle casts are considered medically necessary DME when used to treat ankle fractures.  Rigid ankle casts are considered experimental and investigational when used after ankle sprains, for chronically unstable ankles, or when used to prevent re-injury because of a lack of adequate evidence of the effectiveness of rigid ankle casts for these indications.
    8. Semi-rigid ankle casts: Semi-rigid ankle casts are considered medically necessary DME when used to treat ankle sprains.  Semi-rigid ankle casts are considered experimental and investigational when used after ankle fractures, for use in chronically unstable ankles, or when used to prevent re-injury because of a lack of adequate evidence of effectiveness of semi-rigid ankle cases for these indications.
    9. Stabilizing shoes: Stabilizing shoes for ankle injuries (acute or chronic) are considered experimental and investigational.  Note: In addition, most plans contractually exclude foot orthotics.  Please check benefit plan descriptions.  See CPB 0451 - Foot Orthotics.
    10. Unna boots: Unna boots are considered medically necessary DME when used after ankle sprains and other soft tissue injuries.  Unna boots are considered experimental and investigational when used after ankle fractures, or when used in chronically unstable ankles or to prevent re-injury because of a lack of adequate evidence of the effectiveness of Unna boots for these indications.  See CPB 0009 - Orthopedic Casts, Braces, and Splints.
       
  2. Ankle Foot Orthoses (AFOs) and Knee Ankle Foot Orthoses (KAFOs)

    1. AFOs and KAFOs used in non-ambulatory persons: Ankle contracture splints and foot drop splints

      1. Ankle contracture splints: Aetna considers ankle contracture splints medically necessary DME if all of the following criteria are met:

        1. The ankle contracture splint is used as a component of a therapy program that includes active stretching of the involved muscles and/or tendons, and
        2. The contracture is interfering or expected to interfere significantly with the member's functional abilities, and
        3. There is a reasonable expectation of the ability to correct the contracture, and
        4. The member has a plantar flexion contracture of the ankle with dorsiflexion on passive range of motion testing of at least 10 degrees (i.e., a non-fixed contracture).

        If an ankle contracture splint is used for the treatment of a plantar flexion contracture, the pre-treatment passive range of motion must be measured with a goniometer and documented in the medical record.  There must be documentation of an appropriate stretching program carried out by professional staff (in a nursing facility) or caregiver (at home).

        If an ankle contracture splint is considered medically necessary, a replacement interface is also considered medically necessary DME as long as the member continues to meet medical necessity criteria for the splint.  Up to 1 replacement interface per 6 months is considered medically necessary.

        An ankle contracture splint and replacement interface is not considered medically necessary for the following indications:

        1. Fixed contractures;
        2. Members with foot drop but without an ankle flexion contracture.

        Note: In addition, under HMO plans, an ankle contracture splint and replacement interface is not considered medically necessary when it is used solely for the prevention or treatment of a heel pressure ulcer because Medicare does not consider it medically necessary for these indications.

        A component of an ankle contracture splint that is used to address positioning of the knee or hip is considered experimental and investigational because the effectiveness of this type of component is not established.

      2. Foot drop splint/recumbent positioning device: Aetna's HMO plans do not consider a foot drop splint/recumbent positioning device or replacement interface medically necessary.  A foot drop splint/recumbent positioning device and replacement interface is not considered medically necessary under HMO plans when it is used solely for the prevention or treatment of a heel pressure ulcer because Medicare does not consider it medically necessary for these indications.  A foot drop splint/recumbent positioning device and replacement interface is not considered medically necessary for members with foot drop who are non-ambulatory because there are other more appropriate treatment modalities.
         
      3. Additions to AFOs and KAFOs: Additions to AFOs or KAFOs are not considered medically necessary if either the base orthosis is not medically necessary or the specific addition is not medically necessary.

    2. AFOs and KAFOs used in ambulatory persons

      1. AFOs in ambulatory members: Ankle-foot orthoses (AFO) are considered medically necessary DME for ambulatory members with weakness or deformity of the foot and ankle, which require stabilization for medical reasons, and have the potential to benefit functionally.  Members prescribed custom-made “molded-to-patient-model” AFOs must also meet the criteria set forth in section II.B.3, below.  AFOs are not considered medically necessary for ambulatory members who do not meet these medical necessity criteria.

        Aetna's HMO plans do not consider AFOs and any related addition medically necessary when used solely for the treatment of edema and/or for the prevention or treatment of a heel pressure ulcer in ambulatory patients, as Medicare does not consider AFO's medically necessary for these indications.

        Additions to AFOs or KAFOs are not considered medically necessary if either the base orthosis is not medically necessary or the specific addition is not medically necessary.  (Note: the PHAT dynamic carbon fiber AFO is considered a non-covered deluxe item).

      2. KAFOs in ambulatory members: Knee-ankle-foot orthoses (KAFO) are considered medically necessary DME for ambulatory members for whom an ankle-foot orthosis is covered and for whom additional knee stability is required.  Members prescribed custom-made “molded-to-patient model” KAFOs must also meet the criteria set forth in section II.B.3, below.  KAFOs are not medically necessary and are not covered for ambulatory members who do not meet these coverage criteria.

        Aetna's HMO plans do not consider KAFOs and any related addition medically necessary when used solely for the treatment of edema and/or for the prevention or treatment of a heel pressure ulcer in ambulatory members, as Medicare does not consider KAFO's medically necessary for these indications.

      3. Molded-to-patient model AFO's and KAFO's in ambulatory members: Custom-made AFOs and KAFOs that are “molded-to-patient-model” are considered medically necessary DME for ambulatory members when the basic medical necessity criteria listed in sections II.B.1 and II.B.2 above are met and one of the following criteria is met:

        1. The condition necessitating the orthosis is expected to be permanent or of longstanding duration (more than 6 months); or
        2. There is a need to control the knee, ankle or foot in more than 1 plane; or
        3. The member could not be fit with a pre-fabricated (off-the-shelf) AFO; or
        4. The member has a documented neurological, circulatory, or orthopedic status that requires custom fabricating over a model to prevent tissue injury; or
        5. The member has a healing fracture that lacks normal anatomical integrity or anthropometric proportions.
           
      4. Additions to AFOs and KAFOs: Additions to AFOs and KAFOs are not considered medically necessary if either the base orthosis is not medically necessary and/or the specific addition is not medically necessary. 

      5. Microprocessor-controlled KAFOs: Electronic KAFOs (e.g., the Sensor Walk Electronic KAFO) are considered experimental and investigational because of insufficient evidence that they improve ambulation compared to standard KAFOs.

  3. General Notes:

    1. Prophylactic orthotics: Aetna does not consider ankle orthotics, AFOs, and KAFOs medically necessary treatment of disease when used to prevent injury in a previously uninjured ankle or knee.  Such use is solely preventive, and therefore is considered not considered medically necessary treatment of disease or injury.  In addition, many Aetna plans exclude coverage of safety items.  See CPB 0623 - Safety Items.
    2. Repairs and replacements: Repairs to a medically necessary ankle orthosis, AFO, or KAFO due to wear and tear are considered medically necessary DME when they are needed to make the orthosis functional.  Replacement of a complete ankle orthosis, AFO, or KAFO or component of these orthoses due to a significant change in the member's condition or irreparable wear is considered medically necessary DME if the device is still medically necessary.
    3. Shoes: Please see CPB 0451 - Foot Orthotics for medical necessity criteria for shoes and related items that are an integral part of a leg brace.
    4. Socks: Socks used in conjunction with ankle orthoses, AFOs, or KAFOs are not covered because socks do not meet the contractual definition of durability for covered DME.
    5. Spare orthotics: Identical spare orthotics purchased for the member's convenience is not considered medically necessary.  More than 1 set of different orthotics, however, may be medically necessary
    6. Sports orthotics: Aetna does not consider ankle orthotics, AFOs, and KAFOs medically necessary if they are to be used only during participation in sports.  Such use is considered not medically necessary, as participation in sports is considered an elective activity.

See also  CPB 0696 - Suit Therapy.



Background

This clinical policy bulletin is based primarily on Medicare Durable Medical Equipment Carrier (DMERC) coverage policy on ankle foot orthoses and a review of ankle orthoses from Buschbacher (1991).

An orthosis (brace) is a rigid or semi-rigid device that is used for the purpose of supporting a weak or deformed body member or restricting or eliminating motion in a diseased or injured part of the body.  An orthosis can be either pre-fabricated or custom-fabricated.

Custom-made versus pre-fabricated (off-the-shelf) orthoses:

A pre-fabricated (off-the-shelf) orthosis is one that is manufactured in quantity without a specific patient in mind.  A pre-fabricated orthosis may be trimmed, bent, molded (with or without heat), or otherwise modified for use by a specific patient (i.e., custom-fitted).  An orthosis that is assembled from pre-fabricated components is considered pre-fabricated.  Any orthosis that does not meet the definition of a custom-fabricated (custom-made) orthosis is considered pre-fabricated.

A custom-fabricated (custom-made) orthosis is one that is individually made for a specific patient starting with basic materials including, but not limited to, plastic, metal, leather, or cloth in the form of sheets, bars, etc.  It involves substantial work such as cutting, bending, molding, sewing, etc.  It may involve the incorporation of some pre-fabricated components.  It involves more than trimming, bending, or making other modifications to a substantially pre-fabricated item.  A molded-to-patient-model orthosis is a particular type of custom-fabricated orthosis in which an impression of the specific body part is made (by means of a plaster cast, CAD-CAM technology, etc.) and this impression is then used to make a positive model (of plaster or other material) of the body part.  The orthosis is then molded on this positive model.

Ankle orthotics:

Ankle orthotics may potentially be useful after an acute ankle injury (acute ankle sprain (ligament injury) or fracture), for rehabilitation, to prevent ankle re-injury, and for chronically unstable ankles.  Whether a specific ankle orthotic is effective depends on the particular indication for its use.

There are 4 potential uses for ankle supports: (i) treatment of acute injury (i.e., beginning within 3 days following injury); (ii) rehabilitation (for the first few weeks following injury until full function is obtained); (iii) prophylaxis (used primarily in patients with a history of ankle injury); and (iv) treatment of chronic instability.  The length of time that ankle supports need to be used following injury varies depending largely on the type and severity of the injury

Treatment after acute injury: The ankle begins to swell after injury, and swelling continues to increase for about 3 days following injury.  Significant swelling persists for about 2 weeks following injury.

Rehabilitation: Ankle supports have been used for the first few weeks following injury to prevent re-injury during early return to activity.  After the pain has subsided and the patient can walk without a limp, use of the ankle support is only appropriate during high-risk activities (i.e., especially racquetball, football, and basketball).  Leaving the ankle support on all the time only serves to restrict functional range of motion and encourage psychological dependence.

Prophylaxis: Ankle supports have been used to prevent injury in uninjured individuals and persons with a history of ankle sprain.  There is generally no reason for prophylactic bracing in low-risk activities, such as standing, walking, or climbing stairs.  And it is not clear that prophylactic bracing should be advocated for use during high-risk sports as well, because of prophylactic bracing's cost, inconvenience, and possible detraction from athletic performance.

Chronic instability: Ankle supports are used to stabilize the ankle in patients with chronic instability.  In most instances, they are to be used only during high-risk sports and activities.  It is unusual for ankle supports to be prescribed for use during normal daily activities.

Many types of ankle supports exist as an alternative to ankle taping.  In addition, shoes for some sports (particularly basketball) are available with high tops and built in straps for additional ankle protection.

Recent studies have shown that use of ankle supports during early rehabilitation of acute grade I or grade II ankle sprains (partial ligament rupture) produced results as good as cast immobilization, with more rapid return to activity.

The following is a description of various types of ankle supports, and a summary of the evidence of their effectiveness.  Numerous difficulties arise in interpreting the studies of the various treatments for ankle sprains.  First, most ankle sprains heal well regardless of the form of treatment; thus, almost all treatments produce good results.  It is difficult to measure marginal differences among them.

Second, difficulties arise in comparing different treatment protocols and brands of products.  Research is needed to standardize forms of treatment and to compare the many products on the market.

Third, research has focused on which provide the best mechanical support of the ankle in laboratory stress testing, but it has not been demonstrated that this is the most important factor in predicting clinical outcomes.  It may be that the quality of the proprioceptive (position-sense) feedback from the device is the most important predictor of clinical outcomes.

Taping:

A number of studies have supported the use of tape in helping stabilize the ankle and reducing sprains in persons with previous sprains.

The goal of taping is to prevent the ankle ligaments from being stressed to the point of injury.  Taping should limit ankle inversion and eversion but allow functional dorsiflexion and plantarflexion.  There is evidence that ankle taping also helps prevent injury by stimulating proprioceptive (position-sense) nerve fibers, causing the peroneus brevis muscle to be activated just before heel strike.

For treatment of acute injury (beginning within about 3 days following injury), taping may be used to provide support and to help reduce edema (swelling).  Felt or foam pads may be applied under the tape to help reduce edema.

Taping may be used for rehabilitation (i.e., to prevent re-injury during early return to activity).  About 3 days after the injury, swelling subsides, and tape is re-applied to decrease the risk of re-injury.  Using tape to prevent injury, however, is a time-consuming procedure, so it is recommended for early stages of rehabilitation only.  Tape may be applied for the first few weeks after return to activity for rehabilitation of ankle injuries.

Taping may be used prophylactically in persons with or without a prior ankle sprain, although it is not recommended for routine use for this indication.  Although taping probably reduces the rate of ankle injuries, it loses support rapidly with movement and sweating.  This is not as much as a factor in acute sprains, because in which tape is not stressed so much.  For use prophylactically, however, it is not a time- and cost-effective option compared to the alternatives described below.

Taping has also been recommended as a possible treatment for chronic instability, although it is not recommended for routine use in this situation.  With movement and sweating, tape rapidly loses support.  Also, if used permanently, tape becomes expensive.  This approach is probably not as cost- and time-effective as other options described below.

One-inch wide standard tape is used for the foot, and 1½-inch tape for the ankle.  Areas sensitive to blistering must be protected with lubricated gauze sponges.  Special adherent spray may be applied under the tape.  If tape is to be re-applied often, an underwrap is used to prevent chronic skin irritation.

Tape should only be wrapped by a person well-trained in its application, such as a trainer, physician, nurse, or physician assistant.  Improperly applied tape may cause further injury.

Elastic tape has also been studied, and although it provides more compression than non-elastic tape, it loses its restriction of range of motion even more than standard tape.

Tape and wrapping does not meet the durability requirement for covered durable medical equipment, in that it is not reusable and is not “made to withstand prolonged use.”  Although Aetna will cover taping or wrapping provided by a healthcare provider in their office, take-home tape and wrapping are not covered.

Elastic wrapping and sleeves:

Wrapping with elastic bandages is useful in the early stages (about the first 3 days) of ankle sprain to provide compression that reduces swelling.  It is used as an adjunct to ice and elevation.  It needs to be changed often to monitor the skin.  Wrapping has not been proven to be useful for other indications: prevention of re-injury, prophylactic use, and use for chronic ankle instability.  This is because wrapping provides little or no support during activity.

Elastic ankle sleeves that are pulled over the foot like open-ended socks offer no value as supports.  They may, however, enhance proprioception.  They may also provide even compression to reduce ankle edema.  Thus, they have been shown to be useful only in treating an acute ankle sprain (i.e., within about 3 days after injury).  Like elastic wrapping, elastic ankle sleeves have not been proven to be useful for rehabilitation, prophylaxis, or use in chronically unstable ankles.

Certain manufacturers, e.g., Stromgen, combine the comfort of even compression by using Spandex, elastic, and Velcro strap combinations to restrict eversion, and inversion.  They have been used primarily for prophylaxis.

Bracing:

Like taping, bracing can be used in an acute injury, during rehabilitation to prevent re-injury, prophylactically, and in chronically unstable ankles.  Braces come in 3 main types: casts, lace-up wraps, and plastic orthoses.  Casts can be either semi-rigid or rigid; lace-up braces and plastic orthoses are considered semi-rigid.

Braces have been shown to have several advantages over taping.  They can be used by persons who do not have access to a person skilled in taping techniques.  In some cases, they can be more cost-effective than taping.  But some braces may migrate during vigorous movement because of the lack of adhesion to skin.  This movement may cause the brace to fail to provide support.  But tape adhesion or straps to reduce migration may help.  During wear-and-tear, Velcro fasteners tend to fail and release, straps or buckles break, and elastic stretches out.  Off-the-shelf braces may not fit persons who are too tall, are obese, or deformed.  Custom-made braces are available, but are generally more expensive.

Rigid plaster casts:

Rigid plaster casting, once a common treatment for acute ankle sprains, has now been generally abandoned for this use.  Plaster casting continues to be used in foot and ankle fractures.

Compared with taping, rigid plaster casting has been shown to increase the time to return to activity and has not been shown to produce a better outcome, even in patients with grade III ankle sprains (complete rupture of a ligament).

Still, rigid casting is an option to consider for the early post-operative phase or in cases of gross ankle instability.  When acute swelling subsides, the cast should be replaced with a better fitting one.  It should be replaced with semi-rigid bracing as soon as possible, usually within 1 to 2 weeks.

Rigid casting is not used to prevent re-injury during rehabilitation, for prophylaxis, or for chronic instability.

Soft (semi-rigid) casts:

Semi-rigid casting is done with a wrap that hardens somewhat after application but does not become completely rigid.  The Una (Unna's) boot (Graham Field, Inc., Hauppage, NY) is a semi-rigid cast that consists of a gauze bandage that contains glycerin and gelatin and is applied over a felt bone around the anklebone (the medial malleolus).  In an acute sprain, it provides some support and compression.  Ice is commonly applied around the boot, but no studies have demonstrated adequate tissue cooling with this technique.  In the treatment of acute ankle injuries, semi-rigid casts have not been shown to be more effective than tape.  Semi-rigid casting does not offer enough support to be used to prevent injury during rehabilitation, for prophylaxis, or for chronic instability.

Lace-up braces:

Lace-up braces have been proven to be as effective as tape at restricting ankle range of motion, and unlike tape, lace-ups do not tend to lose their supportive ability during activity.  Lace-up braces are a cost-effective alternative to taping.  They are safe, easy to apply, and reusable.  They are not of much value in the acute stage of injury because they do not provide good uniform compression.  They are probably of some value in preventing re-injury during rehabilitation, for prophylactic use, and for use in patients with chronic ankle instability.

There are a number of brands of lace-ups available; no controlled comparisons have been performed to determine if one brand offers advantages over others.  Examples of variants of standard lace-ups include: (i) braces that use Velcro closures in place of laces; (ii) the Cramer brace (Cramer Products, Gardner, KS), which incorporates a lace-up design with outside straps to provide a heel lock; (iii) the McDavid ankle lace-up brace (McDavid Knee Guard, Chicago, IL) and the Swede-O ankle lace-up brace (Swede-O Universal, North Branch, MN), which can accommodate steel or plastic stays for extra support.

Air-stirrups:

The air-stirrup is a pre-fabricated semi-rigid orthosis.  The largest-selling brand is the Aircast air-stirrup ankle brace (Aircast, Summit, NJ), which is composed of a rigid outer plastic shell that fits up both sides of the leg and is connected under the heel.  It is lined with inner air bags and is attached to the leg with Velcro.  As with lace-up ankle supports, some clinicians combine use of the air-stirrup with taping.  The air-stirrup is an off-the-shelf device that does not require custom fitting.  It can be worn under regular shoes.

The air-stirrup decreases inversion and eversion, and protects the already injured ligament and soft tissues from re-injury, thereby decreasing rehabilitation time.  The pressure in the air-stirrup increases when weight-bearing, which is thought to provide intermittent compression during walking that aids in the milking out of edematous fluid.  The air-stirrup can also be readjusted to allow total contact fitting while swelling is fluctuating.

The air-stirrup can be used after acute ankle sprains and in the early stages of rehabilitation to prevent recurrent sprain.  It can also be used after rigid casting and for treatment of some fractures.  There is currently insufficient evidence for their use for prophylaxis or in chronic instability, although some newer variations of the splint have been designed for this purpose.

Other semi-rigid orthoses:

Other semi-rigid orthoses have not been studied adequately to make accurate comparisons with taping or with air-stirrups.  These include the following:

  • DonJoy Ankle Ligament Protector (DonJoy, Carlsbad, CA) is a plastic brace that seems to restrict range of motion as well as the air-stirrup and possibly better than tape, although no head-to-head comparisons have been published.
  • The Active Ankle (Active Ankle Systems, Louisville, KY) has a stirrup and air cell liner with a hinged ankle may also be useful.
  • The Malleoloc (Bauerfiend USA, Kennesaw, GA) is a stabilizing ankle orthosis that uses a wrap-around ankle brace in conjunction with Velcro strapping.  Although it shows promise, definitive proof if its effectiveness is not yet available.

Other ankle-stabilizing orthoses:

  • Non-Elastic Cloth Wrapping: Non-elastic cloth wrap (also known as the Louisiana heel lock) has been applied over socks to prevent ankle injury.  The advantage of this system is that the wrap can be washed or reused, thus reducing cost.  Cloth wrapping may improve position-sense, but it appears to offer less benefit than taping.  Its use in ankle injuries has not been adequately studied.
  • Nylon and Nylon/Elastic Wrapping: Nylon or Nylon/Elastic heel wraps to be placed over socks may also improve position sense, but like non-elastic cloth wrapping, their use in ankle injuries has not been adequately studied.
  • Orthoplast Stirrup: The orthoplast stirrup is a strip of thermoplastic material custom-fitted to run under the heel and up both sides of the leg.  The ankle bones (malleoli) and other bony prominences are covered with foam padding, and the stirrup is fitted with an elastic bandage.

Orthoplast is a low-temperature thermoplastic that becomes pliable when submerged in hot water.  It is applied directly to the patient and molded evenly around the ankle.  The fabrication is simple enough to be carried out in the office or clinic.

The orthoplast stirrup has been successfully used to treat ankle sprains, but because it is relatively hard, it does not adapt to reduction in swelling.  It has not been shown to decrease inversion range of motion more than tape, and is most commonly used in the acute or early rehabilitative stages.  Orthoplast deteriorates with long-term use, limiting its usefulness in prophylaxis and for chronic ankle sprains.

Stabilizing shoes:

Several shoe designs have been used for prevention and treatment of ankle sprains.

  • Acute injury, rehabilitation, and chronic instability: The use of ankle-stabilizing shoes, such as the Kunzli line of shoes (Swiss Balance, Santa Monica, CA), to treat ankle sprain and to prevent re-injury have not been studied adequately to date.
  • Prophylaxis: High-topped shoes have been shown to increase ankle stiffness in sports.  However, the advantage of high-topped shoes over low-topped shoes in prophylaxis has been shown to be relatively small.  The prophylactic benefits of various shoe types in sports have not been adequately investigated.

Cast-braces:

A number of hinged polypropylene cast braces have been used in the treatment of ankle sprains.  These involve have a foot section with heel stabilizer, a lateral ankle extension, and an articulating ankle joint joining the two.  An example is the Sarmiento cast brace, which is removable and fits in the patient's shoe.  They were designed primarily for long-term use in athletes who suffer from recurrent ankle sprains (i.e., prophylaxis and chronic instability).

Cast-braces require custom fitting by an orthotist for proper impression, fabrication, and fitting.  Fitting of a fresh ankle sprain with a cast-brace is usually not recommended because changes in swelling of the ankle during the initial recovery phase will compromise the cast-brace's fit.

Although these cast-braces have reportedly given good results in the treatment of ankle sprains, they are cumbersome, expensive, and have not been shown to offer any benefits over other forms of treatment.

The Boston ankle system:

The Boston Ankle System (Physical Support Systems, Boston, MA) is a custom-fitted ankle stabilizer.  The Boston Ankle System is made of polypropylene and requires an exact impression.  The services of an orthotist are often required for fine adjustment and accurate fitting.

Ice pack with air-stirrup:

The Cryo/Strap (Aircast, Summit, NJ) ice pack with air-stirrup uses a U-pad for compression of the soft tissue around the ankle.  The pad contains a liquid that can be frozen and is held in place by an elastic strap.  A modified air-stirrup is worn over this device.  This system has been shown to provide uniform compression and to decrease skin temperature for up to 90 mins.  It has not been shown, however, to improve long-term outcomes.

Ankle-foot orthoses (AFOs) and knee-ankle-foot orthoses (KAFOs):

Ankle-foot orthoses (AFOs) extend well above the ankle (usually to near the top of the calf) and are fastened around the lower leg above the ankle.  These features distinguish them from foot orthotics, which are shoe inserts that do not extend above the ankle.

Below the knee, the components of a KAFO are the same as those of an AFO.  However, the KAFO extends to the knee joint and thigh.

A non-ambulatory ankle-foot orthosis may be either an ankle contracture splint or a foot drop splint.

Figueiredo et al (2008) performed a literature review evaluating the quality of current research on the influence of AFO on gait in children with cerebral palsy (CP).  Two between-group and 18 within-group studies met the inclusion criteria indicating a low level of evidence.  Between-group studies each scored "4" on the PEDro Scale, and 17 within-group studies scored "3" and 1 scored "2", indicating low-quality.  Standard terminology for AFO was not used and only 6 studies described functional status using appropriate instruments.  The authors concluded that studies using high-quality methods are still needed to support evidence-based decisions regarding the use of AFO for this population.

In a pilot study, Sheffler et al (2008) examined if an AFO would improve gait velocity and tasks of functional ambulation in patients with multiple sclerosis (MS).  This cross-sectional study enrolled 15 participants with diagnosis of MS, dorsiflexion and eversion weakness, and more than 3 months of using a physician-prescribed AFO.  Subjects' ambulation was evaluated (i) without an AFO and (ii) with an AFO.  Outcome measures were the Timed 25-Foot (T25-FW) walk portion of the Multiple Sclerosis Functional Composite and the 5 trials (Floor, Carpet, Up and Go, Obstacles, Stairs) of the Modified Emory Functional Ambulation Profile (mEFAP).  The mean timed differences on the T25-FW and the 5 components of the mEFAP between the AFO versus no device trials were not statistically significant.  The authors concluded that in MS subjects with dorsiflexion and eversion weakness, no statistically significant improvement was found performing timed tasks of functional ambulation with an AFO. 

Microprocessor-controlled KAFOs

The Sensor Walk is a microprocessor-controlled KAFO designed to assist wearers achieve a safer, more physiologically correct gait.  It does this by unlocking the knee joint when the wearer is ready for swing phase and locking it again for stability during stance phase.  The Sensor Walk system includes an onboard microprocessor, a clutch spring knee joint, foot pressure sensors, a knee angle sensor, a battery, and a battery charger.  When the sound limb has been loaded during walking and the affected side is about to enter swing phase (with the toe still on the ground) the microprocessor reads signal information from the foot and knee sensors and allows the knee to go into flexion.  When the orthosis begins to extend again, the knee will enter a stable phase, preventing any flexion while allowing full extension for stance phase.  The Sensor Walk will support the wearer if they load it at any point while it is extending, offering them exceptional stability.  Wearers can dis-engage the knee joint, such as for sitting, simply by pressing the manual release switch.  The Sensor Walk offers 12 hours of continuous use before it needs to be re-charged, and contains an audible warning to alert the use if the battery is running low.  When the Sensor Walk is turned off, it offers the stability of a traditional locked KAFO throughout the gait cycle.  The Sensor Walk has Manual Release Function.  A control collar at the knee joint can be manually pushed back to temporarily over-ride the locking mechanism and put the joint into free-swing mode.  As soon as the collar is released, the joint will be able to lock.  To over-ride the Sensor Walk’s locking mechanism for a longer period, a Manual Release Rocker Switch can be pressed to lock the control collar in the free-swing mode.  When the Manual Release Rocker Switch is pressed and the joint is in free-swing mode, the switch will show an amber dot to indicate that caution should be used.  In normal operating mode, the switch will show a green dot indicating that the locking feature will function normally.  The Sensor WaIk is comprised of the following parts: (i) a traditional, double-upright KAFO with a free-articulating medial knee joint, (ii) a lateral mechanical clutch, (iii) 6-spring knee joint, (iv) microprocessor-controlled electronics, (v) foot sensors, (vi) a battery, and (vii) a battery charger.  The foot sensor plate includes 4 sensors arranged in a straight line on the bottom of the foot plate.  They are numbered from 1 to 4, beginning with the most posterior.  The sensors overlap by 3/8 inch (10 mm), and are wired to a sensor selection switch located in the electronics of the Sensor Walk.  The Sensor Walk comes delivered with sensors 1 and 2 activated, but, if necessary, other sensors can be selected to optimize patient fitting.

Irby et al (2005) noted that individuals with weak or absent quadriceps who wish to walk independently were prescribed KAFOs.  New stance control orthosis (SCO) designs automatically release the knee to allow swing phase flexion and extension while still locking the joint during stance.  A total of 21 subjects were fitted unilaterally with the Dynamic Knee Brace System (DKBS), a non-commercial SCO -- 13 were experienced KAFO users (average of 28 +/- 18 years of experience) while 8 were novice users.  Novice users demonstrated increased velocity (55 versus 71 cm/sec, p = 0.048) and cadence (77 versus 85 steps/min, p < 0.05) when using the DKBS over the traditional locked KAFO.  Experienced KAFO users tended to have reduced velocity and cadence measures when using the SCO (p < 0.10).  Knee range of motion was significantly greater for the novice group than for the experienced group (55.2 +/- 4.8 versus 42.6 +/- 3.8 degrees, p = 0.05).  Peak knee extension moments tended to be greater for the experienced group (0.29 +/- 0.21 versus 0.087 +/- 0.047 Nm/kg, p = 0.09).  This report described gait changes during the introductory phase of DKBS adoption.  Experienced KAFO users undoubtedly had ingrained gait patterns designed to compensate for walking with a standard locked KAFO.  These patterns may have limited the ability of those users from taking full and immediate advantage of the SCO capabilities.  Also, alternate SCO systems may engender different results.  The authors concluded that comparison studies and longer term field studies are needed to clarify benefits of the various bracing options.

Zissimopoulos et al (2007) noted that users of traditional KAFOs walk with either locked or unlocked knee joints depending on the level of stability required.  Some users may benefit from new stance-control KAFOs that prevent stance-phase knee flexion but allow swing-phase flexion.  These researchrs collected data from 9 non-disabled adults who walked with KAFOs that incorporated the Horton Stance-Control Orthotic Knee Joint (SCOKJ) in the locked, unlocked, and auto (which provides knee stability during stance phase and knee flexion during swing phase) modes to investigate the biomechanical and energetic effects of stance-control orthoses.  Studying non-disabled subjects allowed these researchers to analyze the effects of stance-control orthoses in a homogenous population.  In general, gait kinematics for the auto and unlocked modes were more similar than for the auto and locked modes.  Despite the elimination of hip hiking in the auto mode, oxygen cost was not different between the auto and locked modes (p > 0.99).  The SCOKJ allowed non-disabled subjects to walk with a more normal gait pattern; however, future research should explore the effect of stance-control orthoses on persons with gait pathology.

Davis et al (2010) stated that Stance Control knee-ankle foot orthoses (SCO) differ from their traditional locked knee counterparts by allowing free knee flexion during swing while providing stability during stance.  It is widely accepted that free knee flexion during swing normalizes gait and therefore improves walking speed and reduces the energy requirements of walking.  Limited research has been carried out to evaluate the benefits of SCOs when compared to locked KAFOs.  The purpose of this study was to evaluate the effectiveness of SCOs used for patients with lower limb pathology.  Energy expenditure and walking velocity were measured in 10 subjects using an orthosis incorporating a SCOKJ.  A GAITRite walkway was used to measure temporo-spatial gait characteristics.  A Cosmed K4b2 portable metabolic system was used to measure energy expenditure and heart rate during walking.  Two conditions were tested: (i) walking with stance control active (stance control) and (ii) walking with the knee joint locked.  Ten subjects completed the GAITRite testing; 9 subjects completed the Cosmed testing.  Walking velocity was significantly increased in the stance control condition (p < 0.001).  There was no difference in the energy cost of walking (p = 0.515) or physiological cost index (p = 0.093) between conditions.  The authors concluded that these findings supported previous evidence that stance control knee-ankle foot orthoses increase walking velocity compared to locked knee devices.  However, the stance control condition did not decrease energy expenditure during walking.

Ankle contraction splint:

According to Medicare Durable Medical Equipment Carrier Guidelines, an ankle contracture splint is a pre-fabricated AFO that has all of the following characteristics:

  1. Applies a dorsiflexion force to the ankle , and
  2. Designed to accommodate an ankle with a plantar flexion contracture up to 45°, and
  3. Has a soft interface, and
  4. Used by a patient who is non-ambulatory.

Ankle flexion contracture is a condition in which there is shortening of the muscles and/or tendons that plantarflex the ankle with the resulting inability to bring the ankle to 0 degrees by passive range of motion.  (0 degrees ankle position is when the foot is perpendicular to the lower leg.)

Foot drop splint:

A foot drop splint/recumbent positioning device is a pre-fabricated AFO, which has all of the following characteristics:

  1. Designed to maintain the foot at a fixed position of 0° (i.e., perpendicular to the lower leg), and
  2. Has a soft interface, and
  3. Not designed to accommodate an ankle with a plantar flexion contracture, and
  4. Used by a patient who is non-ambulatory.

Foot drop is a condition in which there is weakness and/or lack of use of the muscles that dorsiflex the ankle but there is the ability to bring the ankle to 0 degrees by passive range of motion.

Foot and ankle orthoses for rheumatoid arthritis:

Hennessy and colleagues (2012) evaluated the evidence for the effectiveness of custom orthoses for the foot and ankle in rheumatoid arthritis.  Studies were identified in appropriate electronic databases (from 1950 to March 2011).  The search term "rheumatoid arthritis" with "foot" and "ankle" and related terms were used in conjunction with "orthoses" and synonyms.  Included studies were quantitative longitudinal studies and included randomized controlled trials (RCTs), case-control trials, cohort studies, and case series studies.  All outcome measures were investigated.  Quality assessment was conducted using the Cochrane Collaboration criteria with additional criteria for sample population representativeness, quality of statistical analysis, and compliant intervention use and presence of cointerventions.  Meta-analyses were conducted for outcome domains with multiple RCTs.  Qualitative data synthesis was conducted for the remaining outcome domains.  Levels of evidence were then assigned to each outcome measure.  The inclusion criteria were met by 17 studies -- 2 studies had high-quality for internal validity and 3 studies had high-quality for external validity.  No study had high-quality for both internal and external validity.  Six outcome domains were identified.  There was weak evidence for custom orthoses reducing pain and forefoot plantar pressures.  Evidence was inconclusive for foot function, walking speed, gait parameters, and reducing hallux abductovalgus angle progression.  The authors concluded that custom orthoses may be beneficial in reducing pain and elevated forefoot plantar pressures in the rheumatoid foot and ankle.  However, they stated that more definitive research is needed in this area.

 
CPT Codes / HCPCS Codes / ICD-9 Codes
CPT codes covered if selection criteria are met:
29405 - 29425
29515
29580
HCPCS codes covered if selection criteria are met:
L1900 Ankle-foot orthosis (AFO), spring wire, dorsiflexion assist calf band, custom fabricated
L1902 Ankle foot orthosis, ankle gauntlet, prefabricated, off-the-shelf
L1904 Ankle orthosis, ankle gauntlet, custom-fabricated
L1906 Ankle foot orthosis, multiligamentus ankle support, prefabricated, off-the-shelf
L1907 Ankle orthosis, supramalleolar with straps, with or without interface/pads, custom fabricated
L1910 AFO, posterior, single bar, clasp attachment to shoe counter, prefabricated, includes fitting and adjustment
L1920 AFO, single upright with static or adjustable stop (Phelps or Perlstein type), custom fabricated
L1930 AFO, plastic or other material, prefabricated, includes fitting and adjustment
L1932 AFO, rigid anterior tibial section, total carbon fiber or equal material, prefabricated, includes fitting and adjustment
L1940 AFO, plastic or other material, custom-fabricated
L1945 AFO, molded to patient model, plastic, rigid anterior tibial section (floor reaction), custom-fabricated
L1950 Ankle foot orthosis, spiral, (Institute of Rehabilitative Medicine type), plastic, custom-fabricated
L1951 Ankle foot orthosis, spiral (Institute of Rehabilitative Medicine type), plastic or other material, prefabricated, includes fitting and adjustment
L1960 AFO, posterior solid ankle, plastic, custom-fabricated
L1970 AFO, plastic, with ankle joint, custom-fabricated
L1971 Ankle foot orthosis, plastic or other material with ankle joint, prefabricated, includes fitting and adjustment
L1980 AFO, single upright free plantar dorsiflexion, solid stirrup, calf band/cuff (single bar "BK" orthosis), custom-fabricated
L1990 AFO, double upright free plantar dorsiflexion, solid stirrup, calf band/cuff (double bar "BK" orthosis), custom-fabricated
L2000 Knee-ankle-foot orthosis (KAFO), single upright, free knee, free ankle, solid stirrup, thigh and calf bands/cuffs (single bar "AK" orthosis), custom-fabricated
L2005 Knee-ankle-foot orthosis, any material, single or double upright, stance control, automatic lock and swing phase release, any type activation, includes ankle joint, any type, custom fabricated
L2010 KAFO, single upright, free ankle, solid stirrup, thigh and calf bands/cuffs (single bar "AK" orthosis), without knee joint, custom-fabricated
L2020 KAFO, double upright, free knee, free ankle, solid stirrup, thigh and calf bands/cuffs (double bar "AK" orthosis), custom-fabricated
L2030 KAFO, double upright, free ankle, solid stirrup, thigh and calf bands/cuffs, (double bar "AK" orthosis), without knee joint, custom-fabricated
L2034 Knee-ankle-foot orthosis, full plastic, single upright, with or without free motion knee, medial lateral rotation control, with or without free motion ankle, custom-fabricated
L2035 KAFO, full plastic, static, (pediatric size), without free motion ankle, prefabricated, includes fitting and adjustment
L2036 Knee-ankle-foot orthosis, full plastic, double upright, with or without free motion knee, with or without free motion ankle, custom-fabricated
L2037 Knee-ankle-foot orthosis, full plastic, single upright, with or without free motion knee, with or without free motion ankle, custom-fabricated
L2038 Knee-ankle-foot orthosis, full plastic, with or without free motion knee, multi-axis ankle, custom-fabricated
L2106 AFO, fracture orthosis, tibial fracture cast orthosis, thermoplastic type casting material, custom-fabricated
L2108 AFO, fracture orthosis, tibial fracture cast orthosis, custom-fabricated
L2112 AFO, fracture orthosis, tibial fracture orthosis, soft, prefabricated, includes fitting and adjustment
L2114 AFO, fracture orthosis, tibial fracture orthosis, semi-rigid, prefabricated, includes fitting and adjustment [for ankle sprains only]
L2116 AFO, fracture orthosis, tibial fracture orthosis, rigid, prefabricated, includes fitting and adjustment [for ankle fractures only]
L2126 KAFO, fracture orthosis, femoral fracture cast orthosis, thermoplastic type casting material, custom-fabricated
L2128 KAFO, fracture orthosis, femoral fracture cast orthosis, custom-fabricated
L2132 KAFO, fracture orthosis, femoral fracture cast orthosis, soft, prefabricated, includes fitting and adjustment
L2134 KAFO, fracture orthosis, femoral fracture cast orthosis, semi-rigid, prefabricated, includes fitting and adjustment [for ankle sprains only]
L2136 KAFO, fracture orthosis, femoral fracture cast orthosis, rigid, prefabricated, includes fitting and adjustment [for ankle fractures only]
L2180 Addition to lower extremity fracture orthosis, plastic shoe insert with ankle joints
L2182 Addition to lower extremity fracture orthosis, drop lock knee joint
L2184 Addition to lower extremity fracture orthosis, limited motion knee joint
L2186 Addition to lower extremity fracture orthosis, adjustable motion knee joint, Lerman type
L2188 Addition to lower extremity fracture orthosis, quadrilateral brim
L2190 Addition to lower extremity fracture orthosis, waist belt
L2192 Addition to lower extremity fracture orthosis, hip joint, pelvic band, thigh flange, and pelvic belt
L2200 Addition to lower extremity, limited ankle motion, each joint
L2210 Addition to lower extremity, dorsiflexion assist (plantar flexion resist), each joint
L2220 Addition to lower extremity, dorsiflexion and plantar flexion assist/resist, each joint
L2230 Addition to lower extremity, split flat caliper stirrups and plate attachment
L2232 Addition to lower extremity orthosis, rocker bottom for total contact ankle foot orthosis, for custom fabricated orthosis only
L2240 Addition to lower extremity, round caliper and plate attachment
L2250 Addition to lower extremity, foot plate, molded to patient model, stirrup attachment
L2260 Addition to lower extremity, reinforced solid stirrup (Scott-Craig type)
L2265 Addition to lower extremity, long tongue stirrup
L2270 Addition to lower extremity, varus/valgus correction ("T") strap, padded/lined or malleolus pad
L2275 Addition to lower extremity, varus/valgus correction, plastic modification, padded/lined
L2280 Addition to lower extremity, molded inner boot
L2300 Addition to lower extremity, abduction bar (bilateral hip involvement), jointed, adjustable
L2310 Addition to lower extremity, abduction bar, straight
L2320 Addition to lower extremity, non-molded lacer, for custom fabrictaed orthosis only [lace-up ankle brace]
L2330 Addition to lower extremity, lacer molded to patient model, for custom fabricated orthosis only [lace-up ankle brace]
L2335 Addition to lower extremity, anterior swing band
L2340 Addition to lower extremity, pre-tibial shell, molded to patient model
L2350 Addition to lower extremity, prosthetic type, (BK) socket, molded to patient model, (used for "PTB", "AFO" orthoses)
L2360 Addition to lower extremity, extended steel shank
L2370 Addition to lower extremity, Patten bottom
L2375 Addition to lower extremity, torsion control, ankle joint and half solid stirrup
L2380 Addition to lower extremity, torsion control, straight knee joint, each joint
L2385 Addition to lower extremity, straight knee joint, heavy duty, each joint
L2387 Addition to lower extremity, polycentric knee joint, for custom fabricated knee ankle foot orthosis, each joint
L2390 Addition to lower extremity, offset knee joint, each joint
L2395 Addition to lower extremity, offset knee joint, heavy duty, each joint
L2397 Addition to lower extremity, orthosis, suspension sleeve
L2405 Addition to knee joint, drop lock, each
L2415 Addition to knee lock with integrated release mechanism (ball, cable, or equal), any material, each joint
L2425 Addition to knee joint, disc or dial lock for adjustable knee flexion, each joint
L2430 Addition to knee joint, ratchet lock for active and progressive knee extension, each joint
L2492 Addition to knee joint, lift loop for drop lock ring
L2750 Addition to lower extremity orthosis, plating chrome or nickel, per bar
L2755 Addition to lower extremity orthosis, high strength, lightweight material, all hybrid lamination/prepreg composite, per segment, for custom fabricated orthosis only
L2760 Addition to lower extremity orthosis, extension, per extension, per bar (for lineal adjustment for growth)
L2768 Orthotic side bar disconnect device, per bar
L2780 Addition to lower extremity orthosis, non-corrosive finish, per bar
L2785 Addition to lower extremity orthosis, drop lock retainer, each
L2795 Addition to lower extremity orthosis, knee control, full kneecap
L2800 Addition to lower extremity orthosis, knee control, kneecap, medial or lateral pull, for use with custom fabricated orthosis only
L2810 Addition to lower extremity orthosis, knee control, condylar pad
L2820 Addition to lower extremity orthosis, soft interface for molded plastic, below knee section
L2830 Addition to lower extremity orthosis, soft interface for molded plastic, above knee section
L2840 Addition to lower extremity orthosis, tibial length sock, fracture or equal, each
L2850 Addition to lower extremity orthosis, femoral length sock, fracture or equal, each
L2999 Lower extremity orthosis, not otherwise specified
L3208 Surgical boot, each, infant
L3209 Surgical boot, each, child
L3211 Surgical boot, each, junior
L3212 Benesch boot, pair, infant
L3213 Benesch boot, pair, child
L3214 Benesch boot, pair, junior
L3260 Surgical boot/shoe, each
L3500 - L3595 Miscellaneous shoe additions [covered only if base orthosis is covered]
L3620 Transfer of an orthosis from one shoe to another, solid stirrup, existing
L3630 Transfer of an orthosis from one shoe to another, solid stirrup, new
L4002 Replacement strap, any orthosis, includes all components, any length, any type
L4010 Replace trilateral socket brim
L4020 Replace quadrilateral socket brim, molded to patient model
L4030 Replace quadrilateral socket brim, custom fitted
L4040 Replace molded thigh lacer, for custom fabricated orthosis only
L4045 Replace non-molded thigh lacer, for custom fabricated orthosis only
L4050 Replace molded calf lacer, for custom fabricated orthosis only
L4055 Replace non-molded calf lacer, for custom fabricated orthosis only
L4060 Replace high roll cuff
L4070 Replace proximal and distal upright for KAFO
L4080 Replace metal bands KAFO, proximal thigh
L4090 Replace metal bands KAFO-AFO, calf or distal thigh
L4100 Replace leather cuff KAFO, proximal thigh
L4110 Replace leather cuff KAFO-AFO, calf or distal thigh
L4130 Replace pretibial shell
L4205 Repair of orthotic device, labor component, per 15 minutes
L4210 Repair of orthotic device, repair or replace minor parts
L4350 Ankle control orthosis, stirrup style, rigid, includes any type interface (e.g., pneumatic, gel), prefabricated, off-the-shelf
L4360 Walking boot, pneumatic and/or vacuum, with or without joints, with or without interface material, prefabricated item that has been trimmed, bent, molded, assembled, or otherwise customized to fit a specific patient by an individual with expertise
L4386 Walking boot, non-pneumatic, with or without joints, with or without interface material, prefabricated item that has been trimmed, bent, molded, assembled, or otherwise customized to fit a specific patient by an individual with expertise
L4387 Walking boot, non-pneumatic, with or without joints, with or without interface material, prefabricated, off-the-shelf
L4392 Replacement soft interface material, static AFO [covered only if orthosis is covered]
L4394 Replace soft interface material, foot drop splint [covered only if foot drop splint is covered]
L4396 Static or dynamic ankle foot orthosis, including soft interface material, adjustable for fit, for positioning, may be used for minimal ambulation, prefabricated item that has been trimmed, bent, molded, assembled, or otherwise customized to fit a specific patient by an individual with expertise
L4397 Static or dynamic ankle foot orthosis, including soft interface material, adjustable for fit, for positioning, may be used for minimal ambulation, prefabricated, off-the-shelf
L4398 Foot drop splint, recumbent positioning device, prefabricated, off-the-shelf
Q4037 - Q4040 Cast supplies, short leg cast [rigid for ankle fractures only] [semi-rigid for ankle sprains only]
Q4045 - Q4048 Cast supplies, short leg splint [for plantar flexion non-fixed contractures without foot drop, with reasonable expectation of correction, that interfere with functional abilities, and are a component of a therapy program]
S8451 Splint, prefabricated, wrist or ankle [for plantar flexion non-fixed contractures without foot drop, with reasonable expectation of correction, that interfere with functional abilities, and are a component of a therapy program]
ICD-9 codes covered if selection criteria are met (not all-inclusive):
718.47 Contracture of joint, ankle and foot
718.87 Other joint derangement, not elsewhere classified, ankle and foot
727.81 Contracture of tendon (sheath)
728.71 Plantar fascial fibromatosis
733.16 Pathologic fracture of tibia or fibula
824.0 - 824.8 Fracture of ankle
837.0 - 837.1 Dislocation of ankle
845.00 - 845.09 Sprains and strains of ankle
959.7 Injury, other and unspecified, knee, leg, ankle, and foot
Other ICD-9 codes related to the CPB:
728.85 Spasm of muscle
728.89 Other disorders of muscle, ligament, and fascia
736.79 Other acquired deformities of ankle and foot
V15.5 Personal history of injury
V54.16 Aftercare of healing traumatic fracture of lower leg
V54.26 Aftercare of healing pathologic fracture of lower leg
V54.89 Other orthopedic aftercare
V58.43 Aftercare following surgery for injury or trauma
V58.78 Aftercare following surgery of the musculoskeletal system, NEC
V67.09 Follow up examination, following other surgery
V67.4 Follow up examination, following treatment of healed fracture


The above policy is based on the following references:
  1. National Heritage Insurance Company (NHIC). Ankle-Foot/Knee-Ankle-Foot Orthosis. Local Coverage Determination No. L11527. Durable Medical Equipment Medicare Administrative Carrier Jurisdiction A. Chico, CA: NHIC; revised March 1, 2008.
  2. Buschbacher RM. Ankle sprain evaluation and bracing. In Physical Rehabilitation of the Injured Athlete. JR Andrews, GL Harrelson, eds. Philadelphia, PA: WB Saunders Co.; 1991:221-239.
  3. Barringer WJ. Principles of orthotic management of athletic injury. In Clinical Sports Medicine. WA Grana, A Kalenak, eds. Philadelphia, PA: WB Saunders Co.; 1991:315-331.
  4. Reider B, Belniak R, Miller DW. Football. In Sports Medicine: The School-Age Athlete. 2nd ed. B Reider, ed. Philadelphia, PA: WB Saunders Co.; 1996:613-645.
  5. American Academy of Orthopedic Surgeons. Athletic Training and Sports Medicine. 2nd ed. Rosemont, IL: American Academy of Orthopedic Surgeons; 1991:705-715.
  6. Hald RD, Fandel DM. Taping and bracing. In Sports Medicine and Rehabilitation: A Sports-Specific Approach. RM Buschbacher, RL Braddom, eds. Philadelphia, PA: Hanley & Belfus, Inc; 1994:337-354.
  7. Handoll HH, Rowe BH, Quinn KM, et al. Interventions for preventing ankle ligament injuries. Cochrane Database Syst Rev. 2001;(3):CD000018.
  8. Bono CM, Berberian WS. Orthotic devices. Degenerative disorders of the foot and ankle. Foot Ankle Clin. 2001;6(2):329-340.
  9. Buonomo LJ, Klein JS, Keiper TL. Orthotic devices. Custom-made, prefabricated, and material selection. Foot Ankle Clin. 2001;6(2):249-252.
  10. Grissom SP, Blanton S. Treatment of upper motoneuron plantarflexion contractures by using an adjustable ankle-foot orthosis. Arch Phys Med Rehabil. 2001;82(2):270-273.
  11. Mauritz KH. Gait training in hemiplegia. Eur J Neurol. 2002;9 Suppl 1:23-29; discussion 53-61.
  12. Gok H, Kucukdeveci A, Altinkaynak H, et al. Effects of ankle-foot orthoses on hemiparetic gait. Clin Rehabil. 2003;17(2):137-139.
  13. Kerkhoffs GMMJ, Struijs PAA, Marti RK, et al. Different functional treatment strategies for acute lateral ankle ligament injuries in adults. Cochrane Database Syst Rev. 2002;(3):CD002938.
  14. Sackley C, Disler PB, Turner-Stokes L, Wade DT. Rehabilitation interventions for foot drop in neuromuscular disease. Cochrane Database Syst Rev. 2007;(2):CD003908.
  15. Rome K, Brown CL. Randomized clinical trial into the impact of rigid foot orthoses on balance parameters in excessively pronated feet. Clin Rehabil. 2004;18(6):624-630.
  16. Pinzur MS, Slovenkai MP, Trepman E, et al. Guidelines for diabetic foot care: Recommendations endorsed by the Diabetes Committee of the American Orthopaedic Foot and Ankle Society. Foot Ankle Int. 2005;26(1):113-119.
  17. Struijs P, Kerkhoffs  G. Ankle sprain. In: BMJ Clinical Evidence. London, UK: BMJ Publication Group; March 2007.
  18. De Pisi F. Aids and orthoses in patients with stroke consequences. Clin Exp Hypertens. 2006;28(3-4):383-385.
  19. Hijmans JM, Geertzen JH, Dijkstra PU, Postema K. A systematic review of the effects of shoes and other ankle or foot appliances on balance in older people and people with peripheral nervous system disorders. Gait Posture. 2007;25(2):316-323.
  20. Richie DH Jr. Effects of foot orthoses on patients with chronic ankle instability. J Am Podiatr Med Assoc. 2007;97(1):19-30.
  21. Lin CWC, Moseley AM, Refshauge KM. Rehabilitation for ankle fractures in adults. Cochrane Database Syst Rev. 2008;(3):CD005595.
  22. Figueiredo EM, Ferreira GB, Maia Moreira RC, et al. Efficacy of ankle-foot orthoses on gait of children with cerebral palsy: Systematic review of literature. Pediatr Phys Ther. 2008;20(3):207-223.
  23. Sheffler LR, Hennessey MT, Knutson JS, et al. Functional effect of an ankle foot orthosis on gait in multiple sclerosis: A pilot study. Am J Phys Med Rehabil. 2008;87(1):26-32.
  24. Cooke MW, Marsh JL, Clark M, et al. Treatment of severe ankle sprain: A pragmatic randomised controlled trial comparing the clinical effecitveness and cost-effectiveness of three types of mechanical ankle support with tubular bandage. The CAST trial. Health Technol Assess. 2009;13(13):1-144.
  25. Irby SE, Bernhardt KA, Kaufman KR. Gait of stance control orthosis users: The dynamic knee brace system. Prosthet Orthot Int. 2005;29(3):269-282.
  26. Zissimopoulos A, Fatone S, Gard SA. Biomechanical and energetic effects of a stance-control orthotic knee joint. J Rehabil Res Dev. 2007;44(4):503-513.
  27. Davis PC, Bach TM, Pereira DM. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users. Prosthet Orthot Int. 2010;34(2):206-215.
  28. Maas JC, Dallmeijer AJ, Huijing PA, et al. Splint: The efficacy of orthotic management in rest to prevent equinus in children with cerebral palsy, a randomised controlled trial. BMC Pediatr. 2012;12:38.
  29. Hennessy K, Woodburn J, Steultjens MP. Custom foot orthoses for rheumatoid arthritis: A systematic review. Arthritis Care Res (Hoboken). 2012;64(3):311-320.


email this page   


Copyright Aetna Inc. All rights reserved. Clinical Policy Bulletins are developed by Aetna to assist in administering plan benefits and constitute neither offers of coverage nor medical advice. This Clinical Policy Bulletin contains only a partial, general description of plan or program benefits and does not constitute a contract. Aetna does not provide health care services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Aetna or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. This Clinical Policy Bulletin may be updated and therefore is subject to change.
Aetna
Back to top