Close Window
Aetna Aetna
Clinical Policy Bulletin:
Radiation Treatment for Selected Nononcologic Indications
Number: 0551


Aetna considers low-dose radiation (superficial or interstitial) medically necessary as an adjunctive therapy immediately following excisional surgery (within 7 days) in the treatment of keloids where medical necessity criteria for keloid removal are met.  See CPB 0031 - Cosmetic Surgery for medically necessary indications for keloid removal.

Radiation therapy is considered medically necessary for preventing heterotopic ossification in persons identified as being at high risk (previous heterotopic ossification, ankylosing spondylitis, diffuse idiopathic skeletal hyperostosis or spinal stenosis, unlimited hip motion preoperatively, and head injury).

See also: CPB 0800 - Dupuytren Contracture: Treatments; and CPB 0231 - Grenz Ray Therapy for Skin Disorders.


Keloids are benign fibrous growths that arise from proliferation of dermal tissue following skin injury.  Conventional treatment options for keloids are occlusive dressings (including silicone-based materials), compression therapy, intra-lesional injections of corticosteroid, cryosurgery, and excision surgery.  Newer modalities include the carbon dioxide laser, Nd:YAG laser, argon laser, pulsed dye laser, intra-lesional interferon-gamma and interferon-alfa 2b, and cultured epithelial autografts.  In general, laser excision results in similar recurrence rates as conventional surgery.  However, the incidence of recurrence is high following conventional forms of treatment.  In particular, the recurrence rate of keloids after excision alone has been reported to be between 45 % and 100 %.  It has also been reported that the recurrence rate following excision is higher with keloids forming at infected sites and in patients with a family history of keloids.  The likelihood of recurrence does not appear to be affected by the person's age, sex, or ethnicity; keloid size or location; individual keloid history; or prior therapy.

Post-operative radiation therapy has been shown to be safe and effective in reducing recurrence of keloids after excision surgery.  In addition, it has been reported that post-operative radiation therapy is a simpler treatment modality with better patient compliance than post-operative corticosteroid injections.

Kal and Veen (2005) stated that for successful prevention of recurrence of keloids after surgical excision, a relatively high-dose must be applied in a short overall treatment time.  The optimal treatment probably is an irradiation scheme resulting in a biologically effective dose (BED) value of at least 30 Gy.  A BED value of 30 Gy can be obtained with, for instance, 1 single acute dose of 13 Gy, 2 fractions of 8 Gy, or 3 fractions of 6 Gy, or 1 single dose of 27 Gy at low-dose rate.  The radiation treatment should be administered within 2 days following surgery.

Ogawa and colleagues (2009) noted that keloids are best treated by a combination of surgery and post-operative radiation therapy, although randomized controlled trials testing this are still lacking.  However, plastic surgeons tend to avoid radiation therapy for keloids for fear of inducing malignant tumors.  Thus, the authors searched for previous reports of associations between carcinogenesis and keloid radiation therapy, and examined the evidence-based opinions of radiation oncologists regarding the acceptability of using radiation to treat keloids.  A computerized literature search was carried out using PubMed that included citations from Medline and PubMed Central between 1901 and March of 2009.  The following search terms were used: "keloid(s)," "hypertrophic scar(s)," "radiation," "radiation therapy," "radiotherapy," "carcinogenesis," "carcinoma," "cancer," "complications," and "side effects."  Moreover, the references for each report were also retrieved.  The authors located 5 cases of carcinogenesis (i.e., fibrosarcoma, basal cell carcinoma, thyroid carcinoma, and breast carcinoma) that were associated with radiation therapy for keloids.  However, it was unclear if an appropriate dose of radiation was used and whether sufficient protection of surrounding tissues was provided.  Moreover, a questionnaire study of radiation oncologists around the world revealed that approximately 80 % considered radiation to be acceptable for treating keloids.  The authors concluded that the risk of carcinogenesis attributable to keloid radiation therapy is very low when surrounding tissues, including the thyroid and mammary glands, especially in children and infants, are adequately protected, and that radiation therapy is acceptable as a keloid treatment modality.

Heterotopic ossification (HO) is an overgrowth of bone that frequently occurs after a bone fracture (break).  It commonly occurs in patients who have fractured bones of the spine, hip, or elbow. It causes pain and disability. Radiation therapy is a local treatment modality that works by damaging the DNA of cells. 

Based on the clinical evidence, preoperative or post operative radiation therapy has been proven to be effective in preventing heterotopic ossification for patients identified as being at risk (previous heterotopic ossification, ankylosing spondylitis, diffuse idiopathic skeletal hyperostosis or spinal stenosis, unlimited hip motion preoperatively, and head injury).

Grenfell and Borg (2014) stated that palmar and plantar fascial fibromatoses are benign hyper-proliferative disorders of the deep fascia of the palm and sole.  These researchers examined the role of radiotherapy in the management of fascial fibromatosis.  A total of 6 consecutive cases of early-stage fascial fibromatosis treated with radiotherapy between July 2008 and May 2011 were analyzed.  The results of the case series were compared with a systematic review of the literature.  All 6 cases regressed or showed a reduction of symptoms following radiotherapy.  Treatment was well-tolerated with minor toxicities.  Median follow-up for the case series was 38.5 months.  The systematic review identified 7 studies describing the use of radiotherapy as primary treatment for fascial fibromatosis between 1946 and 2013.  The literature indicated that radiotherapy can prevent disease progression and improve symptoms for early-stage disease, with low likelihood of significant toxicities.  The authors concluded that early results from this case series were consistent with the literature, showing that radiotherapy can provide an effective management option for patients with early-stage fascial fibromatosis, and justified consideration of radiotherapy as a primary treatment for early-stage disease.  These preliminary findings need to be validated by well-designed studies.

CPT Codes / HCPCS Codes / ICD-9 Codes
CPT codes covered if selection criteria are met:
ICD-9 codes covered if selection criteria are met:
701.4 Keloid scar
720.0 Ankylosing spondylitis
723.0, 724.00 - 724.09 Spinal stenosis
851.00 - 854.19 Cerebral laceration and contusion, subarachnoid, subdural, and extradural hemorrhage, following injury, other and unspecified intracranial hemorrhage following injury, and intracranial injury of other and unspecified nature
ICD-9 codes related if selection criteria are met:
728.13 Postoperative heterotopic calcification

The above policy is based on the following references:

Radiation Therapy for Keloids

  1. Tisdale BA. When to consider radiation therapy for your patients. Am Fam Physician. 1999;59(5):1177-1184.
  2. English RS, Shenefelt PD. Keloids and hypertrophic scars. Dermatol Surg. 1999;25(8):631-638.
  3. Ogawa R, Mitsuhashi K, Hyakusoku H, Miyashita T. Postoperative electron-beam irradiation therapy for keloids and hypertrophic scars: Retrospective study of 147 cases followed for more than 18 months. Plast Reconstr Surg. 2003;111(2):547-553; discussion 554-555.
  4. Thom GA, Heywood JM, Cassidy B, Freund JM. Three-year retrospective review of superficial radiotherapy for skin conditions in a Perth radiotherapy unit. Australas J Dermatol. 2003;44(3):174-179.
  5. Dinh Q, Veness M, Richards S. Role of adjuvant radiotherapy in recurrent earlobe keloids. Australas J Dermatol. 2004;45(3):162-166.
  6. Malaker K, Vijayraghavan K, Hodson I, Al Yafi T. Retrospective analysis of treatment of unresectable keloids with primary radiation over 25 years. Clin Oncol (R Coll Radiol). 2004;16(4):290-298.
  7. UK National Health Service (NHS), National Library for Health (NLH). What is the recommended management of cheloid scars? Primary Care Question Answering Service. London, UK: NLH; February 28, 2005. Available at: Accessed August 22, 2005.
  8. Kal HB, Veen RE. Biologically effective doses of postoperative radiotherapy in the prevention of keloids. Dose-effect relationship. Strahlenther Onkol. 2005;181(11):717-723.
  9. Al-Attar A, Mess S, Thomassen JM, Keloid pathogenesis and treatment. Plast Reconstr Surg. 2006;117(1):286-300.
  10. Jones K, Fuller CD, Luh JY, et al. Case report and summary of literature: Giant perineal keloids treated with post-excisional radiotherapy. BMC Dermatol. 2006;6:7.
  11. De Lorenzi F, Tielemans HJ, van der Hulst RR, et al. Is the treatment of keloid scars still a challenge in 2006? Ann Plast Surg. 2007;58(2):186-192.
  12. van de Kar AL, Kreulen M, van Zuijlen PP, Oldenburger F. The results of surgical excision and adjuvant irradiation for therapy-resistant keloids: A prospective clinical outcome study. Plast Reconstr Surg. 2007;119(7):2248-2254.
  13. Ogawa R, Miyashita T, Hyakusoku H, et al. Postoperative radiation protocol for keloids and hypertrophic scars: Statistical analysis of 370 sites followed for over 18 months. Ann Plast Surg. 2007;59(6):688-691.
  14. Speranza G, Sultanem K, Muanza T. Descriptive study of patients receiving excision and radiotherapy for keloids. Int J Radiat Oncol Biol Phys. 2008;71(5):1465-1469.
  15. Viani GA, Stefano EJ, Afonso SL, De Fendi LI. Postoperative strontium-90 brachytherapy in the prevention of keloids: Results and prognostic factors. Int J Radiat Oncol Biol Phys. 2009;73(5):1510-1516.
  16. Sakamoto T, Oya N, Shibuya K, et al. Dose-response relationship and dose optimization in radiotherapy of postoperative keloids. Radiother Oncol. 2009;91(2):271-276.
  17. Ogawa R, Yoshitatsu S, Yoshida K, Miyashita T. Is radiation therapy for keloids acceptable? The risk of radiation-induced carcinogenesis. Plast Reconstr Surg. 2009;124(4):1196-1201.
  18. Stahl S, Barnea Y, Weiss J, et al. Treatment of earlobe keloids by extralesional excision combined with preoperative and postoperative "sandwich" radiotherapy. Plast Reconstr Surg. 2010;125(1):135-141.
  19. Flickinger JC. A radiobiological analysis of multicenter data for postoperative keloid radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79(4):1164-1170.
  20. Yamawaki S, Naitoh M, Ishiko T, et al. Keloids can be forced into remission with surgical excision and radiation, followed by adjuvant therapy. Ann Plast Surg. 2011;67(4):402-406.
  21. Pai VB, Cummings I. Are there any good treatments for keloid scarring after sternotomy? Interact Cardiovasc Thorac Surg. 2011;13(4):415-418.
  22. Scrimali L, Lomeo G, Tamburino S, et al. Laser CO2 versus radiotherapy in treatment of keloid scars. J Cosmet Laser Ther. 2012;14(2):94-97.
  23. Yossi S, Krhili S, Mesgouez-Nebout N, et al. Adjuvant treatment of keloid scars: Electrons or brachytherapy?. Cancer Radiother. 2013;17(1):21-25.

Radiation Therapy for Heterotopic Ossification

  1. Anglen JO; Moore KD. Prevention of heterotopic bone formation after acetabular fracture fixation by single-dose radiation therapy: a preliminary report. J Orthop Trauma. 1996;10(4):258-263.
  2. Lo TC. Radiation therapy for heterotopic ossification. Semin Radiat Oncol. 1999;9(2):163-170.
  3. Seegenschmiedt MH, Keilholz L, Martus P. Prevention of heterotopic ossification about the hip: Final results of two randomized trials in 410 patients using either preoperative or postoperative radiation therapy. Int J Radiat Oncol Biol Phys. 1997;39(1):161-171.
  4. Seegenschmiedt MH, Makoski HB, Micke O; German Cooperative Group on Radiotherapy for Benign Diseases. Radiation prophylaxis for heterotopic ossification about the hip joint -- a multicenter study. Int J Radiat Oncol Biol Phys. 2001;51(3):756-765.
  5. Sell S, Willms R, Jany R, et al. The suppression of heterotopic ossifications: Radiation versus NSAID therapy -- a prospective study. J Arthroplasty. 1998;13(8):854-859.
  6. Tisdale BA. When to consider radiation therapy for your patient. Am Fam Physician. 1999;59(5):1177-1184.

Radiation Therapy for Miscellaneous Indications

  1. Grenfell S, Borg M. Radiotherapy in fascial fibromatosis: A case series, literature review and considerations for treatment of early-stage disease. J Med Imaging Radiat Oncol. 2014 Apr 14. [Epub ahead of print]

email this page   

Copyright Aetna Inc. All rights reserved. Clinical Policy Bulletins are developed by Aetna to assist in administering plan benefits and constitute neither offers of coverage nor medical advice. This Clinical Policy Bulletin contains only a partial, general description of plan or program benefits and does not constitute a contract. Aetna does not provide health care services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Aetna or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. This Clinical Policy Bulletin may be updated and therefore is subject to change.
Back to top