Number: 0547


Aetna considers medical treatment of rosacea medically necessary.  However, surgical treatment of disfigurement from rosacea (e.g., scarring and telangiectasias) is considered cosmetic.

Aetna considers excision or shaving of rhinophyma medically necessary for the treatment of bleeding or infection refractory to medical therapy (i.e., the need for repeated cautery of bleeding telangiectasias or frequent courses of antibiotics for pustular eruptions), 

Aetna considers the following treatments of rosacea experimental and investigational because their effectiveness for this condition has not been established:

  • Botulinum toxin
  • Topical calcineurin inhibitors (e.g., pimecrolimus and tacrolimus)
  • Topical oxymetazoline

See CPB 0559 - Pulsed Dye Laser Treatment.

Note: Cosmetic surgery is excluded from coverage under Aetna standard benefit plans.  Please check benefit plan descriptions for details.  See CPB 0031 - Cosmetic Surgery.


Rosacea is a multi-factorial skin disorder that usually affects middle-aged individuals and is characterized by persistent erythema, telangiectasias and acute episodes of edema, papules, and pustules.  Patients may have a tendency to flush easily.  Treatment is difficult and is dependent on the severity of disease.  Avoidance of excessive sunlight and extreme temperatures is typically recommended.  Medical management is aimed only at the inflammatory papules and pustules and the erythema that surrounds them.  Topical preparations of metronidazole, clindamycin and erythromycin have been shown to be helpful for mild cases.  Oral tetracycline and erythromycin are often prescribed for moderate cases, and Accutane (isotretinoin) has been found to be effective in severe refractory cases.  Oral metronidazole has also been used in severe refractory cases.

Accepted guidelines indicate that laser surgery and electrocautery are the only satisfactory treatments for the telangiectasias.  Treatment is directed toward obliteration of ectatic vessels.  Rhinophyma (soft tissue and sebaceous hyperplasia of the nose) is considered the culmination of acne rosacea.  Rhinophyma responds to electrosurgery, laser excision, and surgical debulking.  Because telangiectasias and rhinophyma do not cause functional limitations, their treatment is considered cosmetic. 

Goldberg (2005) stated that pharmacological agents remain the mainstay for initial and maintenance treatment of rosacea.  However, monochromatic (i.e., laser) and polychromatic light-based therapies are increasingly being used for the treatment of certain signs of rosacea.  The author noted that despite the increased use of lasers and other light-based therapies, few well-controlled studies have been conducted on their use for the treatment of rosacea.  Furthermore, a Cochrane review on interventions for rosacea (van Zuuren et al, 2005) concluded that the quality of studies evaluating rosacea treatments was generally poor.  There is evidence that topical metronidazole and azelaic acid are effective.  There is some evidence that oral metronidazole and tetracycline are effective.  There is insufficient evidence concerning the effectiveness of other treatments.  Good randomized controlled trials looking at these treatments are urgently needed.

Parodi et al (2011) stated that a range of treatment options are available in rosacea, which include several topical (mainly metronidazole, azelaic acid, other antibiotics, sulfur, retinoids) and oral drugs (mainly tetracyclines, metronidazole, macrolides).  In some cases, the first choice is a systemic therapy because patients may have sensitive skin and topical medications can be irritant.  Isotretinoin can be used in resistant cases of rosacea.  Unfortunately, the majority of studies on rosacea treatments are at high or unclear risk of bias.  A recent Cochrane review (van Zuuren et al, 2011) found that only topical metronidazole, azelaic acid, and oral doxycycline (40 mg) had some evidence to support their effectiveness in moderate-to-severe rosacea and concluded that further well-designed, adequately-powered randomized controlled trials are needed.  In the authors' practice, they evaluated their patients for the presence of 2 possible triggers, Helicobacter pylori infection and small intestinal bacterial over-growth.  When they are present, these clinicians use adapted antibiotic protocols.  If not, they use oral metronidazole or oral tetracycline to treat papulopustolar rosacea.  They also look for Demodex folliculorum infestation.  When Demodex concentration is higher than 5/cm(2), they use topical crotamiton 10 % or metronidazole.

Bamford et al (2012) noted that a 2006 article published in the International Journal of Dermatology reported that oral zinc sulfate 100 mg thrice-daily was associated with improvement in the severity of facial rosacea.  The current study was undertaken to further evaluate the role of zinc in the management of rosacea.  This was a randomized, double-blind trial of 220 mg of zinc sulfate twice-daily for 90 days in patients with moderately severe facial rosacea at baseline.  Subjects were recruited in the Upper Midwest USA between August 2006 and April 2008, and followed until July 2008.  A total of 44 subjects completed the trial (22 in each arm).  Rosacea improved in both groups.  There were no differences in magnitude of improvement based on rosacea severity scores between subjects receiving zinc sulfate and subjects receiving placebo (p = 0.284).  Serum zinc levels were higher in subjects receiving zinc (p < 0.001).  Oral zinc sulfate was not associated with greater improvement in rosacea severity compared with placebo in this study.  The authors stated that additional studies are needed to determine what role oral zinc may have in the management of rosacea.

Chang et al (2012) stated that papulopustular acne rosacea is a chronic inflammatory condition that can be difficult to treat.  Many patients are unwilling to use systemic medications, and single topical agents alone may not address all the symptoms of rosacea.  A combination topical clindamycin phosphate 1.2 % and tretinoin 0.025 % gel is efficacious for acne vulgaris, and may be helpful for rosacea, since acne vulgaris and rosacea shares many similar clinical and histologic features.  In a randomized, double-blind, placebo-controlled, 2-site pilot study, these investigators examined the safety and effectiveness of a combination gel consisting of clindamycin phosphate 1.2 % and tretinoin 0.025 % on papulopustular rosacea after 12 weeks of usage.  A total of 79 subjects with moderate-to-severe papulopustular acne rosacea using both physician and subjects' validated assessment tools wer included in this study.  Primary endpoint consisted of statistically significant reduction in absolute papule or pustule count after 12 weeks of usage.  There was no significant difference in papule/pustule count between placebo and treated groups after 12 weeks (p = 0.10).  However, there was nearly significant improvement in physicians' assessments of the telangiectasia component of rosacea (p = 0.06) and erythemato-telangiectatic rosacea subtype (p = 0.05) in treated versus placebo group after 12 weeks.  The only significant adverse event difference was facial scaling, which was significantly increased in treated group (p = 0.01), but this did not result in discontinuation of study drug.  The authors concluded that a combination gel of clindamycin phosphate 1.2 % and tretinoin 0.025 % may improve the telangiectatic component of rosacea and appears to better treat the erythemato-telangiectatic subtype of rosacea rather than papulopustular subtype.  They stated that these future studies with much larger sample size might confirm these preliminary findings.

Sadick et al (2011) rhinophyma is a benign dermatological disease of the nose that affects primarily Caucasian men in their 5h decade of life.  Its main characteristic is a slowly progressive hyperplasia of the sebaceous glands and the adjacent tissue with irregular thickening of the nasal skin and nodular deformation.  It is defined as the end stage of acne rosacea.  The main reasons for patients to seek medical help are cosmetic problems and functional impairments (e.g., nasal airway obstruction, difficulty in eating).  Surgery is indisputably the treatment of choice for rhinophyma.

Macdonald and Nguyen (2012) presented the case of a 42-year old man with a 10-year history of rosacea, and who exhibited impaired nasal breathing and a mass on the tip of his nose that began growing 9 months earlier.  Examination revealed a multi-lobulated sebaceous nodule (4 cm by 3 cm) protruding from the nasal tip.  The histopathological findings of marked sebaceous hyperplasia, follicular rupture, an absence of granulomas, and prominent fibrosis confirmed the clinical suspicion of rhinophyma.  A biopsy specimen was obtained, and staining did not reveal infectious organisms.  Phyma is the result of hyperplasia and fibrosis of the sebaceous glands in the presence of rosacea.  Although rhinophyma is by far the most common pattern in cases of phyma, metophyma (swelling of the forehead), otophyma (swelling of the ear), and gnathophyma (swelling of the chin) can also be observed.  The lesions can become large, causing significant social stigmatization and posing a challenge in the management of patient care.  Re-contouring with the use of electrosurgery or CO2 laser resurfacing is common.  This patient underwent staged procedures, with shave-debulking surgery followed by contouring with electrosurgery.  His breathing was restored to normal.

Little et al (2012) stated that rhinophyma is a cosmetically disfiguring disease of the external nose that most frequently affects elderly Caucasian males.  Frequently, there is associated derangement of nasal airway patency.  Although the true incidence of rhinophyma and its exact etiology remain unknown, it is widely believed to represent the final stage in a continuum of acne rosacea.  Medical therapy has not been effective in reversing the disease process, and surgery remains the most accepted method of treating rhinophyma.  A wide variety of surgical techniques have been developed and modified over the years in an effort to treat this disorder safely and without significant sequelae.  Despite many advances in fundamental understanding, surgical techniques, and related technologies, no single method has been universally embraced and employed as the "gold standard".  These investigators described the most commonly employed modern surgical techniques and methods used throughout the world to treat rhinophyma.  There was special emphasis on the authors' preferred method of excision and post-operative management (tumescent anesthesia, Weck blade excision, and argon beam coagulation), which has been demonstrated to be effective and expeditious.

Husein-Elahmed and Armijo-Lozano (2013) noted that early stages of rhinophyma can be managed with medical treatment using isotretinoin or oral antibiotics (metronidazole).  However, severe cases usually are refractory to medical approaches.  Surgical therapies to treat these severe refractory cases have been described.  These investigators described a simple, safe, efficient, and cost-effective approach to the treatment of severe rhinophyma using a scalpel and the electroscalpel, instruments readily available in every operating room.

An UpToDate review on “Management of rosacea” (Maier, 2013) states that “Tissue hypertrophy, dilated follicles, and irregular nodular overgrowths are characteristic features of the phymatous subtype of rosacea.  These changes most commonly affect the nose (rhinophyma), but may also affect other areas such as the chin, cheeks, and ears …. Laser ablation and surgical techniques can be used to debulk and recontour tissue distorted by phymatous changes.  Ablative carbon dioxide lasers and infrared diode lasers have been used for this purpose.  Surgical debulking can be performed through dermabrasion, scalpel excision, electrosurgery, or cryosurgery”.

Dayan and colleagues (2012) noted that there are many different treatment modalities for each of the physical findings associated with rosacea, and all have varying results.  As the use of onabotulinumtoxinA rises, its benefit in the treatment of a growing number of medical diseases increases.  The authors reported anecdotal evidence of patients with rosacea experiencing improved symptoms of erythema and flushing after treatment with intradermal, microdroplets of onabotulinumtoxinA.  There were no adverse events reported for any of the treatments.  The mechanism of action through a likely neurogenic component to vascular dysfunction, inflammation, and hyper-sebaceous activity was reviewed.  The effectiveness of onabotulinumtoxinA in the treatment of rosacea needs to be examined in well-designed studies.

Moustafa et al (2014) reviewed important aspects of the pathogenesis of rosacea and the role of new treatment options in its management.  New, emerging treatments show promise; however, quality randomized controlled trials (RCTs) for many of these drugs are lacking.  Brimonidine tartrate (Mirvaso) is an effective newly approved treatment for erythemato-telangiectatic rosacea.  Topical oxymetazoline has potential for the treatment of erythemato-telangiectatic rosacea, with efficacy described in case reports and RCTs currently underway.

Bloom et al (2015) evaluated the safety and effectiveness of intradermal abobotulinumtoxinA on facial erythema of rosacea.  A total of 25 subjects aged 35 to 70 years with Fitzpatrick skin types I to IV and facial erythema of erythemato-telangiectatic rosacea were enrolled in the trial.  Subjects received 15 to 45 units of intradermal injections of abobotulinumtoxinA to the nasal tip, nasal bridge, and nasal alae.  A non-treating investigator assessed the facial erythema of rosacea using a standardized grading system (0 = absent, 1 = mild erythema, 2 = moderate erythema, and 3 = severe erythema) to evaluate digital photographs at baseline, 1, 2, and 3 months after treatment.  Statistical analysis of erythema grade included 1-way repeated-measures analysis of variance and pairwise comparisons using SPSS (IBM Corporation) software.  Fifteen of the 25 enrolled subjects completed all the appropriate follow-up visits.  Only the 15 subjects with complete data were included in analysis.  The subjects were of Fitzpatrick skin types I to III, a mean age of 54 years, and 80 % women.  The mean baseline erythema grade was 1.80 (± 0.56), and the mean erythema grade at 3 months after treatment was 1.00 (± 0.38).  The treatment resulted in statistically significant improvement in erythema grade at 1, 2, and 3 months after treatment when compared with baseline (p < 0.05, p < 0.001, and p < 0.05, respectively).  Pair-wise comparison to baseline showed a mean erythema grade improvement of 0.80 (p < 0.001) at 3-month follow-up.  The authors concluded that intradermal injection of botulinum toxin for the treatment of facial erythema of rosacea appeared both safe and effective.  Moreover, they stated that larger, randomized, blinded, placebo-controlled studies are needed; additionally, further investigation is needed to elucidate the mechanism of action by which botulinum toxin improves facial flushing of rosacea.

In a Cochrane review, van Zuuren et al (2015) evaluated the safety and effectiveness of treatments for rosacea.  The authors concluded that there was low quality evidence for low dose minocycline, laser and intense pulsed light therapy and cyclosporine ophthalmic emulsion for ocular rosacea.  Time needed to response and response duration should be addressed more completely, with more rigorous reporting of adverse events.  They stated that further studies on treatment of ocular rosacea are needed.

An UpToDate review on “Management of rosacea” (Maier, 2015) states that “The role of topical calcineurin inhibitors (tacrolimus and pimecrolimus) in erythematotelangiectatic rosacea is uncertain.  Improvement with topical tacrolimus has been reported in small numbers of patients …. Topical calcineurin inhibitors do not appear to be beneficial for papulopustular rosacea …. The US Food and Drug Administration approved topical ivermectin 1 % cream for the treatment of inflammatory lesions of rosacea in December 2014.  The drug is not yet commercially available …. Ivermectin 1 % cream is applied once daily. Apea-sized amount is applied to each affected area of the face (e.g., forehead, chin, nose, each cheek) and spread into a thin layer”.

In a phase III, investigator-blinded, randomized, parallel-group study, Taieb and colleagues (2015) demonstrated superiority of once-daily ivermectin 1 % cream (IVM 1 %) once-daily versus twice-daily metronidazole (MTZ 0.75 %) cream, regarding percentage reduction of inflammatory lesions in subjects with moderate to severe papulo-pustular rosacea (PPR).  Subjects received IVM 1 % once-daily, or MTZ 0.75 % twice-daily over 16 weeks.  Efficacy assessments were inflammatory lesion counts and Investigator's Global Assessment (IGA).  Safety assessments included incidence of adverse events (AEs) and local tolerance parameters.  Subjects evaluated their disease following a 5-grade scale and completed questionnaires.  A total of 962 subjects were randomized to receive IVM 1 % (n = 478) or MTZ 0.75% (n = 484).  At week 16, IVM 1 % was significantly superior to MTZ 0.75 % in terms of reduction from baseline in inflammatory lesions (83.0 % versus 73.7 %; p < 0.001), observed as early as week 3 (Last Observation Carried Forward, LOCF).  Investigator's Global Assessment results (subjects 'clear' or 'almost clear') also favored IVM 1 %: 84.9 % versus 75.4 %, respectively (p < 0.001).  Incidence of AEs was comparable between groups and local tolerability was better for IVM 1 %.  More subjects receiving IVM rated their global improvement as 'excellent' or 'good'.  The authors concluded that Ivermectin 1 % cream was significantly superior to MTZ 0.75 % cream and achieved high patient satisfaction.

CPT Codes / HCPCS Codes / ICD-10 Codes
Information in the [brackets] below has been added for clarification purposes.   Codes requiring a 7th character are represented by "+":
ICD-10 codes will become effective as of October 1, 2015:
CPT codes covered if selection criteria are met:
10040 Acne surgery (e.g., marsupialization, opening or removal of multiple milia, comedones, cysts, pustules) [for acute rosacea]
30120 Excision or surgical planing of skin of nose for rhinophyma [for the treatment of bleeding or infection refractory to medical therapy (i.e., the need for repeated cautery of bleeding telangiectasias or frequent courses of antibiotics for pustular eruptions)]
CPT codes not covered for indications listed in the CPB:
15780 Dermabrasion; total face (e.g., for acne scarring, fine wrinkling, rhytids, general keratosis)
15781     segmental, face
15782     regional other than face
15783     superficial, any site (e.g., tattoo removal )
15788 Chemical peel, facial; epidermal
15789     dermal
15792 Chemical peel, nonfacial; epidermal
15793     dermal
17000 Destruction (e.g., laser surgery, electrosurgery, cryosurgery, chemosurgery, surgical curettement), premalignant lesions (e.g., actinic keratoses); first lesion
+ 17003     second through 14 lesions, each (List separately in addition to code for first lesion)
17004 Destruction (e.g., laser surgery, electrosurgery, cryosurgery, chemosurgery, surgical curettement), pre-malignant lesions (e.g., actinic keratoses); 15 or more lesions
17106 Destruction of cutaneous vascular proliferative lesions (e.g., laser techniques); less than 10 sq cm
17107     10.0 to 50.0 sq cm
17108     over 50.0 sq cm
17340 Cryotherapy (CO2 slush, liquid N2) for acne
17360 Chemical exfoliation for acne (e.g., acne paste, acid )
HCPCS codes not covered for indications listed in the CPB:
Topical calcineurin inhibitors, topical oxymetazoline - No specific code :
J0585 Injection, onabotulinumtoxinA, 1 unit
J0586 Injection, abobotulinumtoxinA, 5 units
J0587 Injection, rimabotulinumtoxinB, 100 units
J0588 Injection, incobotulinumtoxinA, 1 unit
ICD-10 codes covered if selection criteria are met:
L71.0 - L71.9 Rosacea
ICD-10 codes not covered for indications listed in the CPB:
I78.0 - I78.9 Disease of capillaries [telangiectasias and scarring from rosacea]
L90.5 Scar conditions and fibrosis of skin [from rosacea]

The above policy is based on the following references:
    1. Litt JZ. Rosacea: How to recognize and treat an age-related skin disease. Geriatrics. 1997;52:39-40, 42, 45-47.
    2. Dover JS, Arndt KA, Dinehart SM, et al. Guidelines of care for laser surgery. American Academy of Dermatology, Guidelines/Outcomes Committee. J Am Acad Dermatol. 1999;41(3 Pt 1):484-495.
    3. Laughlin SA, Dudley DK. Laser therapy in the management of rosacea. J Cutan Med Surg. 1998;2 Suppl 4:S4-24-9.
    4. Cuevas T. Identifying and treating rosacea. Nurse Pract.  2001;26(6):13-15, 19-23; quiz 24-25.
    5. Rebora A. The management of rosacea. Am J Clin Dermatol. 2002;3(7):489-496.
    6. Cohen AF, Tiemstra JD. Diagnosis and treatment of rosacea. J Am Board Fam Pract.  2002;15(3):214-217.
    7. Gessert CE, Bamford JT. Measuring the severity of rosacea: A review. Int J Dermatol. 2003;42(6):444-448.
    8. Stone DU, Chodosh J. Oral tetracyclines for ocular rosacea: An evidence-based review of the literature. Cornea. 2004;23(1):106-109.
    9. Odom RB. The subtypes of rosacea: Implications for treatment. Cutis. 2004;73(1 Suppl):9-14.
    10. Rebora A. The management of rosacea. Am J Clin Dermatol. 2002;3(7):489-496.
    11. Zakhary K, Ellis DA. Applications of aminolevulinic acid-based photodynamic therapy in cosmetic facial plastic practices. Facial Plast Surg. 2005;21(2):110-116.
    12. Goldberg DJ. Lasers and light sources for rosacea. Cutis. 2005;75(3 Suppl):22-26; discussion 33-36.
    13. van Zuuren EJ, Graber MA, Hollis S, Interventions for rosacea. Cochrane Database Syst Rev. 2005;(3):CD003262.
    14. van Zuuren EJ, Gupta AK, Gover MD, et al. Systematic review of rosacea treatments. J Am Acad Dermatol. 2007;56(1):107-115.
    15. Thomas K, Yelverton CB, Yentzer BA. The cost-effectiveness of rosacea treatments. J Dermatolog Treat. 2009;20(2):72-75.
    16. Mostafa FF, El Harras MA, Gomaa SM, et al. Comparative study of some treatment modalities of rosacea. J Eur Acad Dermatol Venereol. 2009;23(1):22-28.
    17. Neuhaus IM, Zane LT, Tope WD. Comparative efficacy of nonpurpuragenic pulsed dye laser and intense pulsed light for erythematotelangiectatic rosacea. Dermatol Surg. 2009;35(6):920-928.
    18. Korting H, Schöllmann C. Current topical and systemic approaches to treatment of rosacea. J Eur Acad Dermatol Venereol. 2009;23(8):876-882.
    19. Scheinfeld N, Berk T. A review of the diagnosis and treatment of rosacea. Postgrad Med. 2010;122(1):139-143.
    20. Gallo R, Drago F, Paolino S, Parodi A. Rosacea treatments: What's new and what's on the horizon? Am J Clin Dermatol. 2010;11(5):299-303.
    21. Gollnick H, Blume-Peytavi U, Szabó EL, et al. Systemic isotretinoin in the treatment of rosacea - doxycycline- and placebo-controlled, randomized clinical study. J Dtsch Dermatol Ges. 2010;8(7):505-515.
    22. van Zuuren EJ, Kramer S, Carter B, et al. Interventions for rosacea. Cochrane Database Syst Rev. 2011;3:CD003262.
    23. van Zuuren EJ, Kramer SF, Carter BR, et al. Effective and evidence-based management strategies for rosacea: Summary of a Cochrane systematic review. Br J Dermatol. 2011;165(4):760-781.
    24. Parodi A, Drago F, Paolino S, Treatment of rosacea. Ann Dermatol Venereol. 2011;138 Suppl 3:S211-S214.
    25. Bamford JT, Gessert CE, Haller IV, et al. Randomized, double-blind trial of 220 mg zinc sulfate twice daily in the treatment of rosacea. Int J Dermatol. 2012;51(4):459-462.
    26. Chang AL, Alora-Palli M, Lima XT, et al. A randomized, double-blind, placebo-controlled, pilot study to assess the efficacy and safety of clindamycin 1.2% and tretinoin 0.025% combination gel for the treatment of acne rosacea over 12 weeks. J Drugs Dermatol. 2012;11(3):333-339.
    27. Sadick H, Riedel F, Bran G. Rhinophyma in rosacea. What does surgery achieve? Hautarzt. 2011;62(11):834-841.
    28. Macdonald JB, Nguyen XH. Images in clinical medicine: Rhinophyma. N Engl J Med. 2012;367(19):1838.
    29. Little SC, Stucker FJ, Compton A, Park SS. Nuances in the management of rhinophyma. Facial Plast Surg. 2012;28(2):231-237.
    30. Dayan SH, Pritzker RN, Arkins JP. A new treatment regimen for rosacea: OnabotulinumtoxinA. J Drugs Dermatol. 2012;11(12):e76-e79.
    31. Maier LE. Management of rosacea. Last reviewed April 2013. UpToDate Inc. Waltham, MA.
    32. Husein-Elahmed H, Armijo-Lozano R. Management of severe rhinophyma with sculpting surgical decortication. Aesthetic Plast Surg. 2013;37(3):572-575.
    33. Del Rosso JQ, Thiboutot D, Gallo R, et al. Consensus recommendations from the American Acne & Rosacea Society on the management of rosacea, part 3: A status report on systemic therapies. Cutis. 2014;93(1):18-28.
    34. Tuzun Y, Wolf R, Kutlubay Z, et al. Rosacea and rhinophyma. Clin Dermatol. 2014;32(1):35-46.
    35. Moustafa FA, Sandoval LF, Feldman SR. Rosacea: New and emerging treatments. Drugs. 2014;74(13):1457-1465.
    36. van Zuuren EJ, Fedorowicz Z, Carter B, et al. Interventions for rosacea. Cochrane Database Syst Rev. 2015;4:CD003262.
    37. Maier LE. Management of rosacea. UpToDate Inc., Waltham, MA. Last reviewed April 2015.
    38. Taieb A, Ortonne JP, Ruzicka T, et al; Ivermectin Phase III study group. Superiority of ivermectin 1 % cream over metronidazole 0.75 % cream in treating inflammatory lesions of rosacea: A randomized, investigator-blinded trial. Br J Dermatol. 2015;172(4):1103-1110.
    39. Bloom BS, Payongayong L, Mourin A, Goldberg DJ. Impact of intradermal abobotulinumtoxinA on facial erythema of rosacea. Dermatol Surg. 2015;41 Suppl 1:S9-S16.
    40. Park KY, Hyun MY, Jeong SY, et al. Botulinum toxin for the treatment of refractory erythema and flushing of rosacea. Dermatology. 2015;230(4):299-301.

You are now leaving the Aetna website.

Links to various non-Aetna sites are provided for your convenience only. Aetna Inc. and its subsidiary companies are not responsible or liable for the content, accuracy, or privacy practices of linked sites, or for products or services described on these sites.

Continue >