Pulse Oximetry for Home Use

Number: 0339

  1. Aetna considers a pulse oximeter for home use medically necessary durable medical equipment (DME) for members with any of the following indications:

    1. To determine appropriate home oxygen liter flow for ambulation, exercise, or sleep; or
    2. To monitor individuals on a ventilator at home; or
    3. When a change in the individual's physical condition requires an adjustment in the liter flow of their home oxygen needs; or
    4. When weaning the individual from home oxygen; or
    5. For interstage monitoring of children undergoing the Norwood procedure for hypoplastic left heart syndrome.

    For information on the use of pulse oximetry in periodically re-assessing the need for long-term oxygen in the home, see CPB 0002 - Oxygen.  Pulse oximetry can be used in conjunction with infant home apnea monitoring; for information on infant apnea monitors, see CPB 0003 - Apnea Monitors for Infants.  Home pulse oximetry for indications other than those listed above may be considered medically necessary upon medical review.

  2. Aetna considers the use of home pulse oximetry experimental and investigational for all other indications, including the following because its effectiveness for these indications has not been established:

    1. Asthma management
    2. Diagnosing nocturnal hypoventilation associated with neuromuscular disorders 
    3. Evaluating and teaching continuous positive airway pressure (CPAP)
    4. When used alone as a screening/testing technique for suspected obstructive sleep apnea.

See also CPB 0004 - Obstructive Sleep Apnea in Adults, CPB 0479 - Respiratory Devices: Incentive Spirometers and Intermittent Positive Pressure Breathing Machines, and CPB 0572 - Home/Ambulatory Spirometry.


For patients on long-term oxygen therapy, pulse oximetry arterial oxygen saturation (SaO2) measurements are unnecessary except to assess changes in clinical status, or to facilitate changes in the oxygen prescription.  Home pulse oximetry is also indicated when there is a need to monitor the adequacy of SaO2 or the need to quantitate the response of SaO2 to a therapeutic intervention.

A National Heart, Lung and Blood Institute/World Health Organization Global Asthma Initiative Report concluded that pulse oximetry was not an appropriate method of monitoring patients with asthma.  The report explained that, during asthma exacerbations, the degree of hypoxemia may not accurately reflect the underlying degree of ventilation-perfusion (V-Q) mismatch.  Pulse oximetry alone is not an efficient method of screening or diagnosing patients with suspected obstructive sleep apnea (OSA).  The sensitivity and negative predictive value of pulse oximetry is not adequate to rule out OSA in patients with mild to moderate symptoms.  Therefore, a follow-up sleep study would be required to confirm or exclude the diagnosis of OSA, regardless of the results of pulse oximetry screening.

Home overnight pulse oximetry (OPO) has been used to evaluate nocturnal desaturation in patients with chronic obstructive pulmonary diseases (COPD).  However, Lewis et al (2003) found that nocturnal desaturation in patients with COPD exhibited marked night-to-night variability when measured by home OPO.  A single home OPO recording may be insufficient for accurate assessment of nocturnal desaturation.  Gay (2004) stated that for COPD patients who exhibit more profound daytime hypercapnia, polysomnography is preferred over nocturnal pulse oximetry to rule out other co-existing sleep-related breathing disorders such as OSA (overlap syndrome) and obesity hypoventilation syndrome.

In a retrospective case-series study, Bauman et al (2013) determined the utility of home-based, unsupervised transcutaneous partial pressure of carbon dioxide (tc-Pco(2)) monitoring/oxygen saturation by pulse oximetry (Spo(2)) for detecting nocturnal hypoventilation (NH) in individuals with neuromuscular disorders.  Subjects (n = 35, 68.6 % men; mean age of 46.9 yrs) with spinal cord injury (45.7 %) or other neuromuscular disorders underwent overnight tests with tc-Pco(2)/Spo(2) monitoring.  Fifteen (42.9 %) were using nocturnal ventilatory support, either bilevel positive airway pressure (BiPAP) or tracheostomy ventilation (TV).  A respiratory therapist brought a calibrated tc-Pco(2)/Spo(2) monitor to the patient's home and provided instructions for data collection during the subject's normal sleep period.  Forced vital capacity (FVC), body mass index (BMI), and exhaled end-tidal Pco(2) (ET-Pco(2)) were recorded at a clinic visit before monitoring.  Main outcome measure was detection of NH (tc-Pco(2) greater than or equal to 50 mmHg for greater than or equal to 5 % of monitoring time).  Data were also analyzed to determine whether nocturnal oxygen desaturation (Spo(2) less than or equal to 88 % for greater than or equal to 5 % of monitoring time), FVC, BMI, or daytime ET-Pco(2) could predict the presence of NH.  Nocturnal hypoventilation was detected in 18 subjects (51.4 %), including 53.3 % of those using BiPAP or TV.  Nocturnal hypoventilation was detected in 43.8 % of ventilator-independent subjects with normal daytime ET-Pco(2) (present for 49.4 % +/- 31.5 % [mean +/- SD] of the study period), and in 75 % of subjects with an elevated daytime ET-Pco(2) (present for 92.3 % +/- 8.7 % of the study period).  Oxygen desaturation, BMI, and FVC were poor predictors of NH.  Only 3 attempted monitoring studies failed to produce acceptable results.  The authors concluded that home-based, unsupervised monitoring with tc-Pco(2)/Spo(2) is a useful method for diagnosing NH in neuromuscular respiratory failure (NMRF).  The findings of this small retrospective case-series study need to be validated by well-designed studies.

Nardi et al (2012) noted that pulse oximetry alone has been suggested to determine which patients on home mechanical ventilation (MV) require further investigation of nocturnal gas exchange.  In patients with neuromuscular diseases, alveolar hypoventilation (AH) is rarely accompanied with ventilation-perfusion ratio heterogeneity, and, therefore, oximetry may be less sensitive for detecting AH than in patients with lung disease.  These investigators examined if Spo(2) and tc-Pco(2) during the same night were interchangeable or complementary for assessing home MV efficiency in patients with neuromuscular diseases.  Data were collected retrospectively from the charts of 58 patients with chronic NMRF receiving follow-up at a home MV unit.  Spo(2) and tc-Pco(2) were recorded during a 1-night hospital stay as part of standard patient care.  These researchers compared AH detection rates by tc-Pco(2), Spo(2), and both.  Alveolar hypoventilation was detected based on tc-Pco(2) alone in 24 (41 %) patients, and based on Spo(2) alone with 3 different cut-offs in 3 (5 %), 8 (14 %), and 13 (22 %) patients, respectively.  Using both tc-Pco(2) and Spo(2) showed AH in 25 (43 %) patients.  The authors concluded that pulse oximetry alone is not sufficient to exclude AH when assessing home MV efficiency in patients with neuromuscular diseases.  Both tc-Pco(2) and Spo(2) should be recorded overnight as the first-line investigation in this population.

Also, UpToDate reviews on "Respiratory muscle weakness due to neuromuscular disease: Clinical manifestations and evaluation" (Epstein, 2013a); "Respiratory muscle weakness due to neuromuscular disease: Management" (Epstein, 2013b); "Continuous noninvasive ventilatory support for patients with neuromuscular or chest wall disease" (Bach, 2013), and "Types of noninvasive nocturnal ventilatory support in neuromuscular and chest wall disease" (Hill and Kramer, 2013) do not mention the use of home pulse oximetry.

Studies have demonstrated improvements in survival of infants undergoing the Norwood procedure for hypoplastic left heart syndrome with interstage monitoring with home pulse oximetry (Ghanayem et al, 2003; Dobrolet et al, 2011; Hansen et al, 2012).

In a feasibility study, Cross et al (2012) noted that strategies to reduce inter-stage morbidity and mortality for patients with single ventricle following stage I palliation included standardized care protocols, focused high-risk outpatient clinics, dedicated teams that focus on the unique needs of these fragile patients and use of home surveillance monitoring.  Use of telemedicine devices for home monitoring has been shown to improve outcomes in adults.  These devices allow for a more automated approach to home monitoring that have many advantages.  These researchers described their program that utilizes a web-based telemedicine device to capture and transmit data from the homes of their patients during the inter-stage period.  The authors stated that their early data suggested that home telemedicine is feasible, provides a more systematic data review and analysis and supports the assertion that patients using home surveillance have significantly better nutritional status than those not using home monitoring.

Ohman et al (2013) stated that shunt occlusion is a major cause of death in children with single ventricle.  These investigators evaluated whether one daily measurement of oxygen saturation at home could detect life-threatening shunt dysfunction.  A total of 28 infants were included in this study.  Parents were instructed to measure saturation once-daily and if less than or equal to 70 % repeat the measurement.  Home monitoring was defined as positive when a patient was admitted to Queen Silvia Children's Hospital because of saturation less than or equal to 70 % on repeated measurement at home.  A shunt complication was defined as arterial desaturation and a narrowing of the shunt that resulted in an intervention to relieve the obstruction or in death.  Parents' attitude towards the method was investigated using a questionnaire.  A shunt complication occurred out of hospital 8 times in 8 patients.  Home monitoring was positive in 5 out of 8 patients.  In 2 patients, home monitoring was probably life-saving; in 1 of them, the shunt was replaced the same day and the other had an emergency balloon dilatation of the shunt.  In 3 out of 8 patients, home monitoring was negative; 1 had an earlier stage II and survived, but 2 died suddenly at home from thrombotic shunt occlusion.  On 7 occasions in 3 patients, home monitoring was positive but there was no shunt complication.  The method was well accepted by the parents according to the results of the questionnaire.  The authors concluded that home monitoring of oxygen saturation has the potential to detect some of the life-threatening shunt obstructions between stages I and II in infants with single-ventricle physiology.

Also, an UpToDate review on “Management and outcome of heterotaxy (isomerism of the atrial appendages)” (Lowental et al, 2014) states that “Single ventricle physiology is predominant in RAI [right atrial isomerism], as patients usually have a hypoplastic left ventricle.  These patients also typically have asplenia, as the spleen is a left-side abdominal organ.  In general, patients with RAI most often present during the neonatal period with cyanosis due to right-to-left shunting as a result of pulmonary outflow obstruction and septal defects between the atria and ventricles.  In severely affected neonates, survival is dependent on maintaining a patent ductus arteriosus.  In other cases, respiratory distress may develop because of pulmonary congestion due to pulmonary venous obstruction …. Single ventricle palliation -- Similar to other univentricular conditions, palliative management beginning in the neonate generally consists of a series of staged procedures, which vary with the underlying lesions …. Initial neonatal shunting -- Follow-up visits are frequent for neonates who undergo palliative shunting to secure either pulmonary blood flow or systemic blood flow.  At each visit, the clinical status is evaluated with a focus on the adequacy of oxygen saturation and somatic growth.  As many of these single ventricle patients have ventricular overload and abnormal atrioventricular valves, surveillance echocardiograms are performed on a monthly basis to monitor for the development of atrioventricular insufficiency”.  Moreover, this review does not mention the use of home pulse oximetry as a management tool.

CPT Codes / HCPCS Codes / ICD-10 Codes
Information in the [brackets] below has been added for clarification purposes.   Codes requiring a 7th character are represented by "+":
ICD-10 codes will become effective as of October 1, 2015 :
CPT codes covered if selection criteria is met:
94760 Noninvasive ear or pulse oximetry for oxygen saturation; single determination
94761     multiple determinations (e.g., during exercise)
94762     by continuous overnight monitoring (separate procedure)
CPT codes related to the CPB:
94660 Continuous positive airway pressure ventilation (CPAP), initiation and managemenmt [Pulse oximetry is not covered when performed in home for evaluating and teaching on CPAP use]
HCPCS codes covered if selection criteria are met:
A4606 Oxygen probe for use with oximeter device, replacement
E0445 Oximeter device for measuring blood oxygen levels non-invasively
Other HCPCS codes related to the CPB:
E0424 - E0444, E0450 - E0484 Oxygen and related respiratory equipment
ICD-10 codes covered if selection criteria are met (not all-inclusive):
D75.1 Secondary polycythemia
E84.0 - E84.9 Cystic fibrosis
I20.1 - I20.9 Angina pectoris
I27.0 - I27.9 Other pulmonary heart diseases
I50.20 - I50.9 Congestive heart failure
I73.9 Peripheral vascular disease, unspecified
J43.0 - J43.9 Emphysema
J44.9 Chronic obstructive pulmonary disease, unspecified
J47.0 - J47.9 Bronchiectasis
J80 Acute respiratory distress syndrome
J84.10 Pulmonary fibrosis, unspecified
J95.1 - J95.3
J95.821 - J95.822
Pulmonary insufficiency following trauma and surgery
J96.00 - J96.02 Acute respiratory failure
J96.10 - J96.12 Chronic respiratory failure
J96.20 - J96.22 Acute and chronic respiratory failure
J98.4 Other disorders of lung
P22.0 Respiratory distress syndrome of newborn
P22.1 - P28.9 Other respiratory conditions of fetus and newborn
Q23.4 Hypoplastic left heart syndrome [for interstage monitoring of children undergoing the Norwood procedure]
R06.81 Apnea, not elsewhere classified
R09.02 Hypoxemia
Z99.11 Dependence on respirator [ventilator] status
Z99.81 Dependence on supplemental oxygen
ICD-10 codes not covered for indications listed in the CPB (not all inclusive):
F51.8 Other sleep disorders not due to a substance or known physiological condition
G47.00 - G47.20
G47.30 - G47.39
G47.61 - G47.69
G47.8 - G47.9
Sleep disorders
J45.20 - J45.998 Asthma
Z13.83 Encounter for screening for respiratory disorder, not elsewhere classified

The above policy is based on the following references:
    1. American Association for Respiratory Care (AARC). AARC clinical practice guideline. Oxygen therapy in the home or extended care facility. Respir Care. 1992;37(8):918-922.
    2. National Heart, Lung and Blood Institute (NHLBI) and World Health Organization (WHO). Global Strategy for Asthma Management and Prevention NHLBI/WHO Workshop (based on a March 1993 meeting). Publication Number 95-3659. Bethesda, MD: National Institutes of Health; January 1995.
    3. Series F, Marc I, Cormier Y, et al. Utility of nocturnal home oximetry for case finding in patients with suspected sleep apnea hypopnea syndrome. Ann Int Med. 1993;119:449-453.
    4. Farney RJ, Walker LE, Jensen RL, et al. Ear oximetry to detect apnea and differentiate rapid eye movement (REM) and non-REM sleep. Screening for the sleep apnea syndrome. Chest. 1986;89:533-539.
    5. Ferber R, Millman R, Coppola M, et al. Portable recording in the assessment of obstructive sleep apnea. ASDA Standards of Practice. Sleep. 1994;17:378-392.
    6. American Association for Respiratory Care (AARC). AARC clinical practice guideline. Pulse oximetry. Respir Care. 1991;36(12):1406-1409.
    7. National Institutes of Health. Infantile apnea and home monitoring. Natl Inst Health Consens Dev Conf Consens Statement. 1986;6(6):1-10.
    8. Ringbaek TJ, Lange P, Viskum K. Are patients on long-term oxygen therapy followed up properly? Data from the Danish Oxygen Register. J Intern Med. 2001;250(2):131-136.
    9. Golpe R, Jimenez A, Carpizo R, et al. Utility of home oximetry as a screening test for patients with moderate to severe symptoms of obstructive sleep apnea. Sleep. 1999;22(7):932-937.
    10. Evans SE, Scanlon PD. Current practice in pulmonary function testing. Mayo Clin Proc. 2003;78(6):758-763.
    11. Lewis CA, Eaton TE, Fergusson W, et al. Home overnight pulse oximetry in patients with COPD: More than one recording may be needed. Chest. 2003;123(4):1127-1133.
    12. Gay PC. Chronic obstructive pulmonary disease and sleep. Respir Care. 2004;49(1):39-51; discussion 51-52.
    13. Valentine VG, Taylor DE, Dhillon GS, et al. Success of lung transplantation without surveillance bronchoscopy. J Heart Lung Transplant. 2002;21(3):319-326.
    14. Whitelaw WA, Brant RF, Flemons WW. Clinical usefulness of home oximetry compared with polysomnography for assessment of sleep apnea. Am J Respir Crit Care Med. 2005;171(2):188-193.
    15. Series F, Kimoff RJ, Morrison D, et al. Prospective evaluation of nocturnal oximetry for detection of sleep-related breathing disturbances in patients with chronic heart failure. Chest. 2005;127(5):1507-1514.
    16. Foo JY, Lim CS. Development of a home screening system for pediatric respiratory sleep studies. Telemed J E Health. 2006;12(6):698-701.
    17. Gélinas JF, Davis GM, Arlegui C, Côté A. Prolonged, documented home-monitoring of oxygenation in infants and children. Pediatr Pulmonol. 2008;43(3):288-296. 
    18. Nassi N, Piumelli R, Lombardi E, et al. Comparison between pulse oximetry and transthoracic impedance alarm traces during home monitoring. Arch Dis Child. 2008;93(2):126-132.
    19. Ghanayem NS, Hoffman GM, Mussatto KA, et al. Home surveillance program prevents interstage mortality after the Norwood procedure. J Thorac Cardiovasc Surg. 2003;126(5):1367-1377.
    20. Hansen JH, Furck AK, Petko C, et al. Use of surveillance criteria reduces interstage mortality after the Norwood operation for hypoplastic left heart syndrome. Eur J Cardiothorac Surg.
    21. Dobrolet NC, Nieves JA, Welch EM, et al. New approach to interstage care for palliated high-risk patients with congenital heart disease. J Thorac Cardiovasc Surg. 2011;142(4):855-860.
    22. Nardi J, Prigent H, Adala A, et al. Nocturnal oximetry and transcutaneous carbon dioxide in home-ventilated neuromuscular patients. Respir Care. 2012;57(9):1425-1430.
    23. Bauman KA, Kurili A, Schmidt SL, et al. Home-based overnight transcutaneous capnography/pulse oximetry for diagnosing nocturnal hypoventilation associated with neuromuscular disorders. Arch Phys Med Rehabil. 2013;94(1):46-52.
    24. Epstein SK. Respiratory muscle weakness due to neuromuscular disease: Clinical manifestations and evaluation. UpToDate [online serial]. Waltham, MA: UpToDate; reviewed February 2013a.
    25. Epstein SK. Respiratory muscle weakness due to neuromuscular disease: Management. UpToDate [online serial]. Waltham, MA: UpToDate; reviewed February 2013b.
    26. Bach JR. Continuous noninvasive ventilatory support for patients with neuromuscular or chest wall disease. UpToDate [online serial]. Waltham, MA: UpToDate; reviewed February 2013.
    27. Hill NS, Kramer NR. Types of noninvasive nocturnal ventilatory support in neuromuscular and chest wall disease. UpToDate [online serial]. Waltham, MA: UpToDate; reviewed February 2013.
    28. Cross R, Steury R, Randall A, et al. Single-ventricle palliation for high-risk neonates: Examining the feasibility of an automated home monitoring system after stage I palliation. Future Cardiol. 2012;8(2):227-235.
    29. Pavone M, Cutrera R, Verrillo E, et al. Night-to-night consistency of at-home nocturnal pulse oximetry testing for obstructive sleep apnea in children. Pediatr Pulmonol. 2013;48(8):754-760.
    30. Ohman A, Stromvall-Larsson E, Nilsson B, Mellander M. Pulse oximetry home monitoring in infants with single-ventricle physiology and a surgical shunt as the only source of pulmonary blood flow. Cardiol Young. 2013;23(1):75-81.
    31. Lowenthal A, Tacy T, Punn R. Management and outcome of heterotaxy (isomerism of the atrial appendages). UpToDate [online serial]. Waltham, MA: UpToDate; reviewed February 2014.

You are now leaving the Aetna website.

Links to various non-Aetna sites are provided for your convenience only. Aetna Inc. and its subsidiary companies are not responsible or liable for the content, accuracy, or privacy practices of linked sites, or for products or services described on these sites.

Continue >