Close Window
Aetna Aetna
Clinical Policy Bulletin:
Negative Pressure Wound Therapy
Number: 0334


Policy

Aetna considers negative pressure wound therapy (NPWT) pumps medically necessary, when either of the following criteria (I or II) is met:

  1. Ulcers and Wounds in the Home Setting

    The member has a chronic Stage III or IV pressure ulcer (see Appendix below), neuropathic ulcer (e.g., diabetic ulcer), venous or arterial insufficiency ulcer, or a chronic ulcer of mixed etiology, present for at least 30 days.  A complete wound therapy program described by criterion A and criterion B, C, or D below, as applicable depending on the type of wound, has been tried or considered and ruled out prior to application of NPWT.

    1. For all ulcers or wounds, the following components of a wound therapy program must include a minimum of all of the following general measures, which should either be addressed, applied, or considered and ruled out prior to application of NPWT:

      1. Application of dressings to maintain a moist wound environment, and
      2. Debridement of necrotic tissue if present, and
      3. Documentation of evaluation, care, and wound measurements by a licensed medical professional, and
      4. Evaluation of and provision for adequate nutritional status.
         
    2. For Stage III or IV pressure ulcers:

      1. The member has been appropriately turned and positioned, and
      2. The member has used a group 2 or 3 support surface for pressure ulcers on the posterior trunk or pelvis (see CPB 0430 - Pressure Reducing Support Surfaces) (Note: a group 2 or 3 support surface is not required if the ulcer is not on the trunk or pelvis), and
      3. The member's moisture and incontinence have been appropriately managed.
         
    3. For neuropathic (e.g., diabetic) ulcers:

      1. The member has been on a comprehensive diabetic management program, and
      2. Reduction in pressure on a foot ulcer has been accomplished with appropriate modalities.
         
    4. For venous insufficiency ulcers:

      1. Compression bandages and/or garments have been consistently applied, and
      2. Leg elevation and ambulation have been encouraged.
         
  2. Ulcers and Wounds Encountered in an Inpatient Setting

    1. An ulcer or wound (described in section I above) is encountered in the inpatient setting and, after wound treatments described in I-A through I-D for the various types of ulcers above have been tried or considered and ruled out, it is necessary to initiate NPWT.
    2. The member has complications of a surgically created wound (e.g., dehiscence) or a traumatic wound (e.g., pre-operative flap or graftwhere there is documentation of the medical necessity for accelerated formation of granulation tissue which can not be achieved by other available topical wound treatments (e.g., other conditions of the member that will not allow for healing times achievable with other topical wound treatments).

    In either situation, II-A or II-B, NPWT will be considered medically necessary when treatment continuation is ordered beyond discharge to the home setting.

    Note: NPWT pumps must be capable of accommodating more than 1 wound dressing set for multiple wounds on a member.  Therefore, more than 1 NPWT pump billed per member for the same time period is considered not medically necessary. See specifications of equipment and supplies in the Appendix.

  3. Contraindications:
     
    An NPWT pump and supplies is considered not medically necessary if one or more of the following contraindications are present:

    1. The presence in the wound of necrotic tissue with eschar, if debridement is not attempted; or
    2. Osteomyelitis within the vicinity of the wound that is not concurrently being treated with intent to cure; or
    3. Cancer present in the wound; or
    4. The presence of an open fistula to an organ or body cavity within the vicinity of the wound.
       
  4. Continued Medical Necessity

    For wounds and ulcers described in sections I and II above, once placed on an NPWT pump and supplies, in order to document continued medical necessity, a licensed medical professional must do the following:

    1. On a regular basis, directly assess the wound(s) being treated with the NPWT pump, and supervise or directly perform the NPWT dressing changes, and
    2. On at least a monthly basis, document changes in the ulcer's dimensions and characteristics.

  5. Discontinuation Criteria

    For wounds and ulcers described in sections I and II above, an NPWT pump and supplies will be considered as not medically necessary with any of the following, whichever occurs earliest:

    1. Any measurable degree of wound healing has failed to occur over the prior month. Wound healing is defined as improvement occurring in either surface area (length times width) or depth of the wound. There must be documentation of quantitative measurements of wound characteristics including wound length and width (surface area), or depth, serially observed and documented, over a specified time interval.  The recorded wound measurements must be consistently and regularly updated and must have demonstrated progressive wound healing from month to month; or
    2. Four months (including the time NPWT was applied in an inpatient setting prior to discharge to the home) have elapsed using an NPWT pump in the treatment of any wound.  The medical necessity of NPWT beyond 4 months will be given individual consideration based upon required additional documentation; or
    3. In the judgment of the treating physician, adequate wound healing has occurred to the degree that NPWT may be discontinued, or
    4. Once equipment or supplies are no longer being used for the member, whether or not by the physician's order; or
    5. When criteria under section on Continued Medical Necessity above, cease to be met.
       
  6. Supplies

    1. Up to a maximum of 15 dressing kits per wound per month is considered medically necessary unless there is documentation that the wound size requires more than 1 dressing kit for each dressing change.
    2. Up to a maximum of 10 canister sets per month is considered medically necessary unless there is documentation showing a large volume of drainage (greater than 90 ml of exudate per day).  For high volume exudative wounds, a stationary pump with the largest capacity canister must be used.  Excess utilization of canisters related to equipment failure (as opposed to excessive volume drainage) is not considered medically necessary.

See specifications of equipment and supplies in the Appendix.

Note: Staging of pressure ulcers used in this policy is as follows:

Suspected Deep Tissue Injury Purple or maroon localized are of discolored intact skin or blood-filled blister due to damage of underlying soft tissue from pressure and/or shear. The area may be preceded by tissue that is painful, firm, mushy, boggy, warmer or cooler as compared to adjacent tissue.  
Stage I Intact skin with non-blanchable redness of a localized area usually over a bony prominence. Darkly pigmented skin may not have visible blancing; its color may differ from the surrounding area.

Stage II

Partial thickness loss of dermis presenting as a shallow open ulcer with red or pink wound bed, without slough. May also present as an intact or open/ruptured serum-filled blister.

Stage III

Full thickness tissue loss. Subcutaneous fat may be visible but bone, tendon or muscle are not exposed. Slough may be present but does not obscure the depth of tissue loss. May include undermining or tunneling. 
Stage IV Full thickness tissue loss with exposed bone, tendon or muscle. Slough or eschar may be present on some parts of the wound bed. Often include undermining and tunneling. 
Unstageable Full thickness tissue loss in which the base of the ulcer is covered by slough (yellow, tan, gray, green or brown) and/or eschar (tan, brown, or black) in the wound bed.

Aetna considers NPWT experimental and investigational for the treatment of deep sternal wound infection, partial-thickness burns, pilonidal sinus disease, and all other indications other than those noted in Sections I and II above because its effectiveness for these indications has not been established.

Aetna considers the use of chemotherapeutic agents (e.g. doxycycline and insulin) in continuous-instillation NPWT experimental and investigational because its effectiveness has not been established.

Aetna considers the use of non-powered (mechanical) NPWT devices (e.g., the Smart Negative Pressure [SNaP] Wound Care System) experimental and investigational because their effectiveness has not been established.

Aetna considers the use of single-use NPWT devices (e.g., PICO Single Use Negative Pressure Wound Therapy System; Prevena Incision Management System) experimental and investigational for all indications (e.g., wound care and keloid scarring) because of insufficient evidence of their effectiveness.

See also CPB 0244 - Wound Care.



Background

This policy is based in part upon Medicare DME MAC medical necessity criteria for negative pressure wound therapy (NPWT) pumps.

Negative pressure wound therapy is the controlled application of subatmospheric pressure to a wound using an electrical pump to intermittently or continuously convey subatmospheric pressure through connecting tubing to a specialized wound dressing which includes a resilient, open-cell foam surface dressing, sealed with an occlusive dressing that is meant to contain the subatmospheric pressure at the wound site and thereby promote wound healing.  Drainage from the wound is collected in a canister.

Negative pressure wound therapy has been used to promote healing of chronic wounds and pressure ulcers (decubitus ulcers) by creating controlled negative pressure over the wound that is thought to increase local vascularity and oxygenation of the wound bed, reduce edema by evacuating wound fluid, and remove exudate and bacteria.

More than a dozen systematic evidence reviews produced by independent organizations have questioned the quality of the evidence supporting the use of NPWT, including systematic evidence reviews published by the Cochrane Collaboration (Evans and Land, 2001; Wasiak and Cleland, 2007; Ubbink et al, 2008), Washington State Department of Labor and Industries (2003), Canadian Coordinating Office for Health Technology Assessment (Fisher and Brady, 2003), Australian Safety and Efficacy Register of New Interventional Procedures -- Surgical (Pham et al, 2003), NHS Quality Improvement Scotland (NHS QIS, 2003), Centre for Clinical Effectiveness (Higgins, 2003), Agency for Healthcare Research and Quality (Samson et al, 2004), Technology Assessment Unit of McGill University Health Centre (Costa et al, 2005), Institute for Quality and Efficiency in Health Care (IQWiG, 2006), Ontario Ministry of Health and Long-Term Care (MAS, 2004; MAS, 2006), Galician Agency for Health Technology Assessment (AVALIA-T, 2005), and BMJ Clinical Evidence (Nelson and Jones, 2006; Nelson and Penthrick, 2007).

Control of intra-abdominal fluid secretion, facilitation of abdominal exploration, and preservation of the fascia for abdominal wall closure is a major challenge in the management of patients with an open abdomen.  Vacuum-assisted therapy has been reported to help meet the challenges of managing the open abdomen and may be useful in patients with abdominal compartment syndromes, traumatic injuries, and severe intra-abdominal sepsis.  In a review on the management of patients with open abdomen, Kaplan (2004) concluded that controlled clinical studies are needed to establish the safety and effectiveness of this treatment approach and to facilitate the development of treatment guidelines to help manage an increasingly common group of patients who might benefit from this treatment approach. A systematic evidence review by the National Institute for Health and Clinical Excellence (NICE, 2009) found inadequate evidence for the use of NPWT in open abdominal wounds.  The NICE assessment concluded that "[c]urrent evidence on the safety and efficacy of negative pressure wound therapy (NPWT) for the open abdomen is inadequate in quality and quantity. There has been concern about the occurrence of intestinal fistulae associated with this procedure but there is currently no evidence about whether NPWT is the cause."

Schimmer and colleagues (2007) stated that there are many primary modalities for managing deep sternal wound infection (DSWI) following cardiac surgery, namely surgical debridement with primary re-closure in conjunction with irrigation, VAC, and primary or delayed flap closure.  These researchers examined if there is consensus on the primary management of DSWI using one method as a single line therapy or a combination of these procedures.  Therefore, a questionnaire with regards to the primary treatment modalities of DSWI was distributed to all 79 German heart surgery centers.  All replied to the questionnaire -- VAC is used in 28/79 (35 %) heart centers as the 'first-line' treatment, 22/79 (28 %) perform primary reclosure in conjunction with a double-tube irrigation/suction system, and in 29/79 (37 %) clinics both treatment options were used according to intra-operative conditions.  Mostly, as a primary management of DSWI two treatment modalities are mainly in use: primary reclosure coupled with a double-tube suction/irrigation system and VAC.  The current understanding is based purely on retrospective studies, not evidence-based medicine.  Since prospective randomized controlled trials (RCTs) have not yet been performed, controlled clinical trials comparing these treatment modalities are pivotal to define evidence for patients presenting with DSWI.

Morris et al (2007) noted that although NPWT appears effective, it remains unknown if it is more effective than other wound closure techniques.  In addition, although many uncontrolled, non-randomized studies describing the effectiveness of this therapy have been published, few prospective RCTs have been conducted.  Small sample sizes, variable outcome measures across studies, and significant methodological problems in the available RCTs further limit the conclusions that can be drawn regarding the relative effectiveness of vacuum-assisted wound closure.  Analysis of these data provided weak evidence to suggest that NPWT is superior to saline gauze dressings in healing chronic wounds.  The authors concluded that RCTs comparing healing, costs of care, patient pain, and quality-of-life outcomes of this treatment to non-gauze type dressings and other treatment modalities are needed.

Gregor et al (2008) examined the clinical effectiveness and safety of negative NPWT compared with conventional wound therapy; RCTs and non-RCTs comparing NPWT and conventional therapy for acute or chronic wounds were included in this review.  The main outcomes of interest were wound-healing variables.  After screening 255 full-text articles, 17 studies remained.  In addition, 19 unpublished trials were found, of which 5 had been prematurely terminated.  Two reviewers independently extracted data and assessed methodological quality in a standardized manner.  Seven RCTs (n = 324) and 10 non-RCTs (n = 278) met the inclusion criteria.  The overall methodological quality of the trials was poor.  Significant differences in favor of NPWT for time to wound closure or incidence of wound closure were shown in 2 of 5 RCTs and 2 of 4 non-RCTs.  A meta-analysis of changes in wound size that included 4 RCTs and 2 non-RCTs favored NPWT (standardized mean difference: RCTs, -0.57; non-RCTs, -1.30).  The authors concluded that although there is some indication that NPWT may improve wound healing, the body of evidence available is insufficient to clearly prove an additional clinical benefit of NPWT.  Furthermore, the large number of prematurely terminated and unpublished trials is reason for concern.

Vikatmaa et al (2008) conducted a systematic review of the literature on the safety and effectiveness of NPWT for problematic wounds.  A total of 14 RCTs were included.  Trials included patients with: (i) pressure wounds, (ii) post-traumatic wounds, (iii) diabetic foot ulcers, and (iv) miscellaneous chronic ulcers.  Only 2 trials were classified as high quality studies, whereas the remaining were classified as having poor internal validity.  The authors concluded that (i) reliable evidence on the effectiveness of NPWT is scarce, (ii) tentative evidence indicates that the effectiveness of NPWT is at least as good as or better than current local treatment for wounds, and (iii) the need for large high-quality randomized studies is apparent.

Blume et al (2008) evaluated the safety and clinical efficacy of NPWT compared with advanced moist wound therapy (AMWT) (predominately hydrogels and alginates) to treat foot ulcers in diabetic patients in a multi-center randomized controlled trial (n = 342).  The mean age was 58 years and 79 % of subjects were male.  Complete ulcer closure was defined as skin closure (100 % re-epithelization) without drainage or dressing requirements.  Patients were randomly assigned to either NPWT or AMWT (predominately hydrogels and alginates) and received standard off-loading therapy as needed.  The trial evaluated treatment until day 112 or ulcer closure by any means.  Patients whose wounds achieved ulcer closure were followed at 3 and 9 months.  Each study visit included closure assessment by wound examination and tracings.  A greater proportion of foot ulcers achieved complete ulcer closure with NPWT (73 of 169, 43.2 %) than with AMWT (48 of 166, 28.9 %) within the 112-day active treatment phase (p = 0.007).  The Kaplan-Meier median estimate for 100 % ulcer closure was 96 days (95 % confidence interval [CI]: 75.0 to 114.0) for NPWT and not determinable for AMWT (p = 0.001).  Patients who received NPWT experienced significantly (p = 0.035) fewer secondary amputations.  The proportion of home care therapy days to total therapy days for NPWT was 9,471 of 10,579 (89.5 %) and 12,210 of 12,810 (95.3 %) for AMWT.  In assessing safety, no significant difference between the groups was observed in treatment-related complications such as infection, cellulitis, and osteomyelitis at 6 months.  The authors concluded that NPWT appears to be as safe as and more efficacious than AMWT for the treatment of diabetic foot ulcers.

The Centers for Medicare and Medicaid Services (CMS) partnered with the Agency for Healthcare Research and Quality (AHRQ) and commissioned a review of NPWT devices.  AHRQ contracted with the ECRI Institute Evidence-based Practice Center to perform the review.

A technology assessment report on NPWT (Sullivan et al, 2009) prepared for the Agency for Healthcare Research and Quality found that systematic reviews of NPWT reveal the following important points about the current state of the evidence on this technology: (i) all of the systematic reviews noted the lack of high-quality clinical evidence supporting the advantages of NPWT compared to other wound treatments; the lack of high-quality NPWT evidence resulted in many systematic reviewers relying on low-quality retrospective studies to judge the efficacy of this technology, (ii) no studies directly comparing different NPWT components (e.g., foam versus gauze dressings) were identified by any of the reviewers, and (iii) NPWT must be evaluated according to wound type; wound healing varies according to the type of wound being treated and NPWT benefits described for one wound type cannot be assumed to apply to other wound types. 

The assessment stated that the available evidence cannot be used to determine a significant therapeutic distinction of a NPWT system.  In addition, due to the lack of studies comparing one NPWT system to another NPWT system the severity of adverse events for 1 NPWT system compared to another could not be determined.  The report concluded, "Clinical research on NPWT capable of indicating if any one NPWT system or component provides a significant therapeutic distinction requires study design and conduct that will minimize the possibilities for bias.  Important study design features that were not typically reported such as concealment of allocation, reporting of randomization methods, use of power analysis to ensure adequate study size, blinding wound assessors, and reporting of complete wound healing data will improve the internal validity and the informativeness of the studies."

Negative pressure wound therapy uses a reticulated sponge and subatmospheric pressure to facilitate healing of a variety of wounds.  The therapy appears to assist wound healing by decreasing wound bacterial burden and edema while facilitating granulation tissue formation.  The latest development in NPWT allows clinicians to instill continuously a treatment solution and suspension into the wound.  A variety of wound chemo-therapeutic agents such as insulin, which acts as a growth factor, may prove helpful in this aspect.  Scimeca and colleagues (2010a) presented a case report in which insulin was used as a chemo-therapeutic agent in continuous-instillation NPWT.  To the authors' knowledge, this is the first report in the literature describing this method of delivery.  Furthermore, Scimeca et al (2010b) described a real-time streaming therapy of a variety of wound chemo-therapeutic agents through NPWT.  Doxycycline, which acts as a competitive inhibitor of matrix metalloproteinases and tumor necrosis factor alpha and further decreases inflammation through the reduction of nitrous oxide production, may prove helpful when delivered in this manner.  To the authors' knowledge, this is the first report in the literature describing this method of delivery of doxycycline.  The clinical value of chemo-therapeutic agents in continuous-instillation NPWT nees to be ascertained in randomized, controlled clinical trials.

A non-powered (mechanical) NPWT device, the Smart Negative Pressure (SNaP) Wound Care System from Spiracur, is a class II device that received 510(k) marketing clearance from the Food and Drug Administration in 2010 and is designed to remove small amounts of exudate from chronic, traumatic, dehisced, acute, subacute wounds and diabetic and pressure ulcers.  The lack of well-designed comparative studies with large number of individuals using the non-powered NPWT system is insufficient to draw conclusions about its impact on health outcomes with the device and in comparison with current care.

The European Pressure Ulcer Advisory Panel's clinical practice guideline on pressure ulcer treatment (2009) recommended conventional NPWT therapy, but did not mention non-powered NPWT.

In a systematic review, Roberts et al (2012) determined the comparative safety and effectiveness of NPWT versus alternate temporary abdominal closure (TAC) techniques in critically ill adults with open abdominal wounds.  These researchers reviewed published and unpublished comparative studies.  They searched MEDLINE, PubMed, EMBASE, Scopus, Web of Science, the Cochrane Database, the Center for Reviews and Dissemination, clinical trials registries, and bibliographies of included articles.  Two authors independently abstracted data on study design, methodological quality, patient characteristics, and outcomes.  Among 2,715 citations identified, 2 RCTs and 9 cohort studies (3 prospective/6 retrospective) met inclusion criteria.  Methodological quality of included prospective studies was moderate.  One RCT observed an improved fascial closure rate (relative risk [RR], 2.4; 95 % CI: 1.0 to 5.3) and length of hospital stay after addition of retention sutured sequential fascial closure to the Kinetic Concepts Inc. (KCI) vacuum-assisted closure (VAC).  Another reported a trend toward enhanced fascial closure using the KCI VAC versus Barker's vacuum pack (RR, 2.6; 95 % CI: 0.95 to 7.1).  A prospective cohort study observed improved mortality (RR, 0.48; 95 % CI: 0.25 to 0.92) and fascial closure (RR, 1.5; 95 % CI: 1.1 to 2.0) for patients who received the ABThera versus Barker's vacuum pack.  Another noted a reduced arterial lactate, intra-abdominal pressure, and hospital stay for those fitted with the KCI VAC versus Bogotá bag.  Most included retrospective studies exhibited low methodological quality and reported no mortality or fascial closure benefit for NPWT.  The authors concluded that limited prospective comparative data suggested that NPWT versus alternate TAC techniques may be linked with improved outcomes.  Moreover, they stated that the clinical heterogeneity and quality of available studies precluded definitive conclusions regarding the preferential use of NPWT over alternate TAC techniques.

Guidance from tne National Institute for Health and Clinical Excellence (NICE, 2013) stated that current evidence on the safety and efficacy of NPWT for the open abdomen is adequate to support the use of this procedure provided that normal arrangements are in place for consent, audit and clinical governance. The guidance stated that NPWT for the open abdomen may be used to manage open abdominal wounds in which the gut and other intraperitoneal organs are exposed.

In a Cochrane review, Dumville and Munson (2012) evaluated the effectiveness of NPWT for people with partial-thickness burns.  For this third update we searched the Cochrane Wounds Group Specialised Register (searched May 18, 2012); the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2012, Issue 5); Ovid MEDLINE (2010 to week 2 of May 2012); Ovid MEDLINE (in-process & other non-indexed citations May 17, 2012); Ovid EMBASE (2010 to week 19 of 2012); and EBSCO CINAHL (2010 to May 16, 2012).  All RCTs and controlled clinical trials (CCTs) that evaluated the safety and effectiveness of NPWT for partial-thickness burns were selected for analysis.  Two review authors used standardized forms, and extracted the data independently.  They assessed each trial for risk of bias, and resolved differences by discussion.  One RCT, that was an interim report, satisfied the inclusion criteria.  These investigators undertook a narrative synthesis of results, as the absence of data and poor reporting precluded them from carrying out any formal statistical analysis.  The trial was at high-risk of bias.  The authors concluded that there was insufficient evidence available to permit any conclusions to be drawn regarding the use of NPWT for treatment of partial-thickness burn wounds.

The PICO single-use negative pressure wound therapy device (Smith & Nephew, Inc., Andover, MA) is a single-use, canister-free, negative pressure wound therapy device.  It is marketed for use in the following types of wounds: chronic; acute; traumatic; subacute and dehisced wounds; partial-thickness burns; ulcers (e.g., diabetic or pressure); flaps and grafts; and closed surgical incisions.  The PICO system contains a disposable, 1-button pump, coupled with an advanced dressing that negates the need for a canister.  The pump is pocket-sized and the dressing can be worn up to 7 days. 

Fraccalvieri et al (2012) stated that keloid scarring represents a pathological healing where primary healing phenomenon is deviated from normal.  PICO is a single-use negative pressure wound therapy system originally introduced to manage open or just closed wounds.  PICO dressing is made of silicone, and distributes an 80 mmHg negative pressure across wound bed.  Combination of silicon layer and continuous compression could be a valid method to manage keloid scarring.  Since November 2011, 3 patients were enrolled and evaluated before negative pressure treatment, at end of treatment (1 month) and 2 months later, through Vancouver scar scale (VSS), visual analog scale (VAS) and a scoring system for itching.  Ultrasound (US) and color-power-Doppler (CPD) examination was performed to evaluate thickness and vascularization of the scar.  One patient was discharged from study after 1 week.  In last 2 patients, VSS, VAS and itching significantly improved after 1 month therapy and the results were stable after 2 months without any therapy.  At end of therapy, the appearance of palisade vessels disappeared in both cases at CPD exam; US showed a thickness reduction (average of 43.8 %).  The authors proposed a well-tolerated, non-invasive treatment to manage keloid scarring.  They stated that prospective studies are needed to confirm these preliminary findings.

Appendix

Specifications of Equipment and Supplies:

NPWT is provided with an integrated system of components. This system contains a pump, dressing sets and a separate collection canister. Wound suction systems that do not contain all of the required components are not classified as NPWT. See below for component specifications.

For purposes of this policy, a NPWT pump describes a stationary or portable Negative Pressure Wound Therapy (NPWT) electrical pump which provides controlled subatmospheric pressure that is designed for use with NPWT dressings and canisters to promote wound healing. The NPWT pump must be capable of being selectively switched between continuous and intermittent modes of operation and is controllable to adjust the degree of subatmospheric pressure conveyed to the wound in a range of 40-80 mm Hg subatmospheric pressure. The system must contain sensors and alarms to monitor pressure variations and exudate volume in the collection canister. 

A NPWT dressing kit describes an allowance for a dressing set which is used in conjunction with a stationary or portable NPWT pump. A single dressing kit is used for each single, complete dressing change, and contains all necessary components, including but not limited to any separate, non-adherent porous dressing(s), drainage tubing, and an occlusive dressing(s) which creates a seal around the wound site for maintaining subatmospheric pressure at the wound. 

A NPWT collection cannister describes a canister set which is used in conjunction with a stationary or portable NPWT pump and contains all necessary components, including but not limited to a container to collect wound exudate. Canisters may be various sizes to accommodate stationary or portable NPWT pumps.

Contraindications for Negative Pressure Wound Therapy (NPWT):

NPWT is contraindicated in the presence of any the following:

  • Cancer present in the wound; or
  • Inadequately debrided wounds; granulation tissue that will not form over necrotic tissue; or
  • Presence of untreated coagulopathy; or
  • The presence in the wound of necrotic tissue with eschar, if debridement is not attempted; or
  • The presence of a fistula to an organ or body cavity within the vicinity of the wound; or
  • Untreated osteomyelitis or spesis within the vicinity of the wound.

List of Negative Pressure Wound Therapy (NPWT) Devices*

ActiV.A.C.® Therapy Unit
Engenex® Advanced NPWT System
Exusdex® wound drainage pump
EZCARE Negative Pressure Wound Therapy
Genadyne A4 Wound Vacuum System
InfoV.A.C.® Therapy Unit
Invia Liberty Wound Therapy
Invia Vario 18 ci Wound Therapy
Medela® Invia Liberty pump
Mini V.A.C.®
NPD 1000 Negative Pressure Wound Therapy System
Prodigy™ NPWT System (PMS-800 and PMS-800V)
PRO-II™
PRO-I™
RENASYS™ EZ Negative Pressure Wound Therapy
SVEDMAN™ and SVED™ Wound Treatment Systems
V.A.C.® ATS™
V.A.C.® Freedom™
V.A.C.® Instill Device
V.A.C.® Therapy Unit
V.A.C.® (Vacuum Assisted Closure™)
V1STA Negative Pressure Wound Therapy
Venturi™ Negative Pressure Wound Therapy

* These devices have U.S. Food and Drug Administration 510(k) clearance for marketing in the United States.  This list is not all-inclusive.

Documentation Requirements:

Information describing the history, previous treatment regimens (if applicable), and current wound management for which an NPWT pump is being billed must be present in the member’s medical record and be available for review upon request. This documentation must include such elements as length of sessions of use, dressing types and frequency of change, and changes in wound conditions, including precise measurements, quantity of exudates, presence of granulation and necrotic tissue and concurrent measures being addressed relevant to wound therapy (debridement, nutritional concerns, support surfaces in use, positioning, incontinence control, etc.). 

Information describing the wound evaluation and treatment, recorded in the member’s medical record, must indicate regular evaluation and treatment of the beneficiary’s wounds, as detailed in the Policy Section. Documentation of quantitative measurements of wound characteristics including wound length and width (surface area), and depth, and amount of wound exudate (drainage), indicating progress of healing must be entered at least monthly. The supplier of the NPWT equipment and supplies must obtain from the treating clinician, an assessment of wound healing progress, based upon the wound measurement as documented in the member’s medical record, in order to determine whether the equipment and supplies continue to be medically necessary. (The supplier need not view the medical records in order to bill for continued use of NPWT. Whether the supplier ascertains that wound healing is occurring from month to month via verbal or written communication is left to the discretion of the supplier. However, the member’s medical records may be requested in order to corroborate that wound healing is/was occurring as represented on the supplier’s claims for reimbursement.) 

When billing for NPWT, an ICD-9-CM diagnosis code (specific to the 5th digit or narrative diagnosis), describing the wound being treated by NPWT, must be included on each claim for the equipment and related supplies. 

The medical record must include a statement from the treating physician describing the initial condition of the wound (including measurements) and the efforts to address all aspects of wound care listed in the Policy Section. For each subsequent month, the medical record must include updated wound measurements and what changes are being applied to effect wound healing. Month-to-month comparisons of wound size must compare like measurements i.e. depth compared to depth or surface area compared to surface area. 

If the initiation of NPWT occurs during an inpatient stay, in order to accurately account for the duration of treatment, the initial inpatient date of service must be documented. This date must be available upon request. 

When NPWT therapy exceeds 4 months on the most recent wound, individual consideration for one additional month at a time may be sought using the appeals process. Information from the treating physician’s medical record, contemporaneous with each requested one-month treatment time period extension, must be submitted with each appeal explaining the special circumstances necessitating the extended month of therapy. Note, this policy provides coverage for the use of NPWT limited to initiating healing of the problem wounds described in the Policy Section section of this CPB rather than continuation of therapy to complete healing since there is no published medical literature demonstrating evidence of a clinical benefit for the use of NPWT to complete wound healing. Therefore, general, vague or nonspecific statements in the medical record such as “doing well, want to continue until healed” provide insufficient information to justify the need for extension of treatment. The medical record must provide specific and detailed information to explain the continuing problems with the wound, what additional measures are being undertaken to address those problems and promote healing and why a switch to alternative treatments alone is not possible. 

When billing for quantities of canisters greater than those described in the Policy Section as the usual maximum amounts, there must be clear and explicit information in the medical record that justifies the additional quantities. 

 
CPT Codes / ICD-9 Codes / HCPCS Codes
CPT codes covered if selection criteria are met:
97605
97606
Other CPT codes related to the CPB:
11000 - 11047
97597 - 97598
97602
HCPCS codes covered if selection criteria are met:
A6550 Wound care set, for negative pressure wound therapy electrical pump, includes all supplies and accessories
A9272 Wound suction, disposable, includes dressing, all accessories and components, any type, each
E2402 Negative pressure wound therapy electrical pump, stationary or portable
K0743 Suction pump, home model, portable, for use on wounds
K0744 Absorptive wound dressing for use with suction pump, home model, portable pad size 16 square inches or less
K0745 Absorptive wound dressing for use with suction pump, home model, portable pad size more than 16 square inches but less than or equal to 48 square inches
K0746 Absorptive wound dressing for use with suction pump, home model, portable, pad size greater than 48 square inches
HCPCS codes not covered for indications listed in the CPB:
G0456 - G0457 Negative pressure wound therapy, (e.g. vacuum assisted drainage collection) using a mechanically-powered device, not durable medical equipment, including provision of cartridge and dressing(s), topical application(s), wound assessment, and instructions for ongoing care, per session
Other HCPCS codes related to the CPB:
A7000 Canister, disposable, used with suction pump, each
ICD-9 codes covered if selection criteria are met:
250.60 - 250.63 Diabetes with neurological manifestations [chronic Stage III or IV neuropathic ulcers (e.g., diabetic ulcer), venous or arterial insufficiency ulcer, or a chronic ulcer of mixed etiology present for at least 30 days meeting specific criteria]
250.70 - 250.73 Diabetes with peripheral circulatory disorders [chronic Stage III or IV neuropathic ulcers (e.g., diabetic ulcer), venous or arterial insufficiency ulcer, or a chronic ulcer of mixed etiology present for at least 30 days meeting specific criteria]
250.80 - 250.83 Diabetes with other specified manifestations [chronic Stage III or IV neuropathic ulcers (e.g., diabetic ulcer), venous or arterial insufficiency ulcer, or a chronic ulcer of mixed etiology present for at least 30 days meeting specific criteria]
440.23 Atherosclerosis of the extremities with ulceration [chronic Stage III or IV neuropathic ulcers (e.g., diabetic ulcer), venous or arterial insufficiency ulcer, or a chronic ulcer of mixed etiology present for at least 30 days meeting specific criteria]
440.24 Atherosclerosis of the extremities with gangrene [chronic Stage III or IV neuropathic ulcers (e.g., diabetic ulcer), venous or arterial insufficiency ulcer, or a chronic ulcer of mixed etiology present for at least 30 days meeting specific criteria]
443.9 Peripheral vascular disease [chronic Stage III or IV neuropathic ulcers (e.g., diabetic ulcer), venous or arterial insufficiency ulcer, or a chronic ulcer of mixed etiology present for at least 30 days meeting specific criteria]
454.0 Varicose veins of lower extremities with ulcer [chronic Stage III or IV neuropathic ulcers (e.g., diabetic ulcer), venous or arterial insufficiency ulcer, or a chronic ulcer of mixed etiology present for at least 30 days meeting specific criteria]
682.0 - 682.8 Other cellulitis and abscess
707.23 - 707.24 Pressure ulcer stage III or IV
868.10 - 868.19 Injury to other intra-abdominal organs, with open wound into cavity
879.2 - 879.5 Open wound of abdominal wall
880.10 - 880.19, 881.10 - 881.12, 884.1, 890.1, 891.1, 892.1, 894.1 Open wound of upper or lower limb, complicated [see criteria]
959.12 Other injury of abdomen [abdominal traumatic injuries]
998.31 - 998.32 Disruption of operation wound
998.59 Other postoperative infection [other than deep sternal wound infections]
998.83 Non-healing surgical wound [other than open abdominal wounds or deep sternal wound infections] [see criteria]
ICD-9 codes not covered for indications listed in CPB (not all-inclusive):
685.0 Pilonidal cyst with abscess
685.1 Pilonidal cyst without mention of abscess
701.4 Keloid scar
707.0 - 707.22, 707.25 - 707.9 Chronic ulcer of skin [other than chronic stage III or stage IV pressure ulcer, neuropathic ulcer (e.g., diabetic ulcer), venous or arterial insufficiency ulcer, or a chronic ulcer of mixed etiology present for at least 30 days]
875.1 Open wound of chest (wall), complicated [deep sternal wound infection]
941.20 - 941.29 Second degree burns of face, head, and neck [partial-thickness]
942.20 - 942.29 Second degree burns of trunk [partial-thickness]
943.20 - 943.29 Second degree burn of upper limb, except wrist and hand [partial-thickness]
944.20 - 944.28 Second degree burn of wrist(s) and hand(s) [partial-thickness]
ICD-9 codes contraindicated for Negative Pressure Wound Therapy (NPWT):
140.0 - 209.36, 209.75, 230.0 - 234.9 Malignant neoplasms [cancer present in wounds]
686.9 Unspecified local infection of skin and subcutaneous tissue, fistula of skin NOS; skin infection NOS [to an organ or body cavity within the vicinity of the wound]
730.00 - 730.29 Acute, chronic, or unspecified osteomyelitis [untreated osteomyelitis within the vicinity of the wound]
785.4 Gangrene [presence in the wound of necrotic tissue with eschar if debridement is not attempted]
941.30 - 941.59 Third degree burns face, head and neck [presence in the wound of necrotic tissue with eschar if debridement is not attempted]
942.30 - 942.59 Third degree burns trunk [presence in the wound of necrotic tissue with eschar if debridement is not attempted]
943.30 - 943.59 Third degree burns upper limb [presence in the wound of necrotic tissue with eschar if debridement is not attempted ]
944.30 - 944.58 Third degree burns wrist and hand [presence in the wound of necrotic tissue with eschar if debridement is not attempted]
945.30 - 945.59 Third degree burns lower limb [presence in the wound of necrotic tissue with eschar if debridement is not attempted]
946.3 - 946.5 Third degree burns multiple sites [presence in the wound of necrotic tissue with eschar if debridement is not attempted]
998.6 Persistent postoperative fistula, NEC [to an organ or body cavity within the vicinity of the wound]


The above policy is based on the following references:
  1. Kalailieff D. Vacuum-assisted closure: Wound care technology for the new millennium. Perspectives. 1998;22(3):28-29. 
  2. Hartnett JM. Use of vacuum-assisted wound closure in three chronic wounds. J Wound Ostomy Continence Nurs. 1998;25(6):281-290. 
  3. Voinchet V, Magalon G. Vacuum assisted closure. Wound healing by negative pressure. Ann Chir Plast Esthet. 1996;41(5):583-589. 
  4. Blackburn JH 2d, Boemi L, Hall WW, et al. Negative-pressure dressings as a bolster for skin grafts. Ann Plast Surg. 1998;40(5):453-457. 
  5. Argenta LC, Morykwas MJ. Vacuum-assisted closure: A new method for wound control and treatment: Clinical experience. Ann Plast Surg. 1997;38(6):563-577. 
  6. Mullner T, Mrkonjic L, Kwasny O, et al. The use of negative pressure to promote the healing of tissue defects: A clinical trial using the vacuum sealing technique. Br J Plast Surg. 1997;50(3):194-199. 
  7. Valenta AL. Using the vacuum dressing alternative for difficult wounds. Am J Nursing. 1994;94(4):44-45. 
  8. HealthNow NY, Inc. Negative pressure wound therapy pumps. DMERC Region A Medical Review Policy No. 14.31. Binghamton, NY: HealthNow, December 12, 2000. Available at: http://www.umd.nycpic.com/rev15_1431NegativePressureWound.html. Accessed December 18, 2000.
  9. Baynham SA, Kohlman P, Katner HP. Treating stage IV pressure ulcers with negative pressure therapy: A case report. Ostomy Wound Manage. 1999;45(4):28-32, 34-35. 
  10. Deva AK, Siu C, Nettle WJ. Vacuum-assisted closure of a sacral pressure sore. J Wound Care. 1997;6(7):311-312. 
  11. Deva AK, Buckland GH, Fisher E, et al. Topical negative pressure in wound management. Med J Aust. 2000;173(3):128-131. 
  12. Avery C, Pereira J, Moody A, et al. Clinical experience with the negative pressure wound dressing. Br J Oral Maxillofac Surg. 2000;38(4):343-345. 
  13. Philbeck TE Jr, Whittington KT, Millsap MH, et al. The clinical and cost effectiveness of externally applied negative pressure wound therapy in the treatment of wounds in home healthcare Medicare patients. Ostomy Wound Manage. 1999;45(11):41-50. 
  14. Banwell PE. Topical negative pressure therapy in wound care. J Wound Care. 1999;8(2):79-84. 
  15. Mooney JF 3rd, Argenta LC, Marks MW, et al. Treatment of soft tissue defects in pediatric patients using the V.A.C. system. Clin Orthop. 2000;376:26-31. 
  16. Mendez-Eastman S. Negative pressure wound therapy. Plast Surg Nurs. 1998;18(1):27-29, 33-37. 
  17. Hopf HW, Humphrey LM, Puzziferri N, et al. Adjuncts to preparing wounds for closure: Hyperbaric oxygen, growth factors, skin substitutes, negative pressure wound therapy (vacuum-assisted closure). Foot Ankle Clin. 2001;6(4):661-682. 
  18. Krasner DL. Managing wound pain in patients with vacuum-assisted closure devices. Ostomy Wound Manage. 2002;48(5):38-43. 
  19. Ford CN, Reinhard ER, Yeh D, et al. Interim analysis of a prospective, randomized trial of vacuum-assisted closure versus the Healthpoint System in the management of pressure ulcers. Ann Plast Surg. 2002;49(1):55-61; discussion 61. 
  20. Nelson EA, Jones J. Venous leg ulcers. In: BMJ Clinical Evidence. London, UK: BMJ Publishing Group; July 2006. 
  21. Nelson EA, Petherick E. Pressure ulcers. In: BMJ Clinical Evidence. London, UK: BMJ Publishing Group; February 2007. 
  22. Evans D, Land L. Topical negative pressure for treating chronic wounds. Cochrane Database Syst Rev. 2001;(1):CD001898. 
  23. Wanner MB, Schwarzl F, Strub B, et al. Vacuum-assisted wound closure for cheaper and more comfortable healing of pressure sores: A prospective study. Scand J Plast Reconstr Surg Hand Surg. 2003;37(1):28-33.
  24. Song DH, Wu LC, Lohman RF, et al. Vacuum assisted closure for the treatment of sternal wounds: The bridge between debridement and definitive closure. Plast Reconstr Surg. 2003;111(1):92-97.
  25. Washington State Department of Labor and Industries, Office of the Medical Director. Wound VAC. Coverage Decision. Olympia, WA: Washington State Department of Labor and Industries; 2003. Available at: http://www.lni.wa.gov/omd/TechAssessDocs.htm. Accessed August 7, 2003.
  26. Fisher A, Brady B. Vacuum assisted wound closure therapy. Ottawa, ON: Canadian Coordinating Office for Health Technology Assessment (CCOHTA); March 2003.
  27. Pham CT, Middleton P, Maddern G. Vacuum-assisted closure for the management of wounds: An accelerated systematic review. ASERNIP-S Report No. 37. Adelaide, SA: Australian Safety and Efficacy Register of New Interventional Procedures – Surgical (ASERNIP-S); December 2003.
  28. Kaplan M. Managing the open abdomen. Ostomy Wound Manage. 2004;50(1A Suppl):C2, 1-8.
  29. McGuinness JG, Winter DC, O'Connell PR. Vacuum-assisted closure of a complex pilonidal sinus. Dis Colon Rectum. 2003;46(2):274-276.
  30. Duxbury MS, Finlay IG, Butcher M, Lambert AW. Use of a vacuum assisted closure device in pilonidal disease. J Wound Care. 2003;12(9):355.
  31. Higgins S. The effectiveness of vacuum assisted closure (VAC) in wound healing. Evidence Centre Evidence Report. Clayton, VIC: Centre for Clinical Effectiveness (CCE); 2003.
  32. Lynch JB, Laing AJ, Regan PJ. Vacuum-assisted closure therapy: A new treatment option for recurrent pilonidal sinus disease. Report of three cases. Dis Colon Rectum. 2004;47(6):929-932.
  33. Verrillo SC. Negative pressure therapy for infected sternal wounds: A literature review. J Wound Ostomy Continence Nurs. 2004;31(2):72-74.
  34. Armstrong DG, Attinger CE, Boulton AJ, et al. Guidelines regarding negative wound therapy (NPWT) in the diabetic foot. Ostomy Wound Manage. 2004;50(4B Suppl):3S-27S.
  35. Kaplan M. Negative pressure wound therapy in the management of abdominal compartment syndrome. Ostomy Wound Manage. 2004;50(11A Suppl):20S-25S.
  36. Gupta S, Baharestani M, Baranoski S, et al. Guidelines for managing pressure ulcers with negative pressure wound therapy. Adv Skin Wound Care. 2004;17 Suppl 2:1-16.
  37. Samson D, Lefevre F, Aronson N. Wound-healing technologies: Low-level laser and vacuum-assisted closure. Evidence Report/Technology Assessment No. 111. Rockville, MD: Agency for Healthcare Research and Quality; December 2004.
  38. NHS Quality Improvement Scotland (NHS QIS). Vacuum assisted closure for wound healing (VAC). Evidence Note 5. Glasgow, Scotland, NHS QIS; November 2003.
  39. Ontario Ministry of Health and Long-Term Care, Medical Advisory Secretariat (MAS). Vacuum assisted closure therapy for wound care. Health Technology Literature Review. Toronto, ON: MAS; 2004.
  40. Letter from Cynthia Hake, Director, Centers for Medicare and Medicaid Services HCPCS Workgroup, Baltimore, MD, to Richard Weston, BlueSky Medical Group, Inc., Vista, CA, regarding request to establish a code for portable powered suction pump, trade name: Versitile Wound Vacuum System, October 27, 2005.
  41. Armstrong DG, Lavery LA; Diabetic Foot Study Consortium. Negative pressure wound therapy after partial diabetic foot amputation: A multicentre, randomised controlled trial. Lancet. 2005;366(9498):1704-1710.
  42. Costa V, Brophy J, McGregor M. Vacuum-assisted wound closure therapy (VAC). Report No.19. Montreal, QC: Technology Assessment Unit of the McGill University Health Centre (MUHC); 2005.
  43. Caniano DA, Ruth B, Teich S. Wound management with vacuum-assisted closure: Experience in 51 pediatric patients. J Pediatr Surg. 2005;40(1):128-132.
  44. Gastelu-Iturri Bilbao J, Atienza Merino G. Vacuum-assisted closure effectiveness for chronic wounds therapy. Technical Report [summary]. CT2005/01. Santiago de Compostela, Spain: Galician Agency for Health Technology Assessment (AVALIA-T); 2005.
  45. Wasiak J, Cleland H. Topical negative pressure for partial thickness burns. Cochrane Database Syst Rev. 2007;(3):CD006215.
  46. Stannard JP, Robinson JT, Anderson ER, et al. Negative pressure wound therapy to treat hematomas and surgical incisions following high-energy trauma. J Trauma. 2006;60(6):1301-1306.
  47. Ontario Ministry of Health and Long-Term Care, Medical Advisory Secretariat (MAS). Negative pressure wound therapy. Health Technology Literature Review. Toronto, ON: MAS; 2006.
  48. Institute for Quality and Efficiency in Health Care (IQWiG). Scientific evaluation of the current status of medical knowledge on vacuum assisted closure (VAC) therapy of wounds [summary]. Technology Assessment. Cologne, Germany: IQWiG; 2006.
  49. TriCenturion LLC. Negative pressure wound therapy (NPWT) widespread probe results. Jurisdiction A – Final Report. Jurisdiction A/B DME PSC. LPET20070219-E2402. Columbia, SC: Tricenturion; February 2007. Available at: http://www.tricenturion.com/content/pcalpet.cfm. Accessed April 13, 2007.
  50. Vlayen J, Camberlin C, Ramaekers D. Negative pressure wound therapy: A rapid assessment. KCE Reports 61. Brussels, Belgium: Belgian Health Care Knowledge Centre (KCE); 2007.
  51. Armstrong DG, Lavery LA, Boulton AJ. Negative pressure wound therapy via vacuum-assisted closure following partial foot amputation: What is the role of wound chronicity? Int Wound J. 2007;4(1):79-86.
  52. Schimmer C, Sommer SP, Bensch M, Leyh R. Primary treatment of deep sternal wound infection after cardiac surgery: A survey of German heart surgery centers. Interact Cardiovasc Thorac Surg. 2007;6(6):708-711.
  53. Morris GS, Brueilly KE, Hanzelka H. Negative pressure wound therapy achieved by vacuum-assisted closure: Evaluating the assumptions. Ostomy Wound Manage. 2007;53(1):52-57.
  54. Gregor S, Maegele M, Sauerland S, et al. Negative pressure wound therapy: A vacuum of evidence? Arch Surg. 2008;143(2):189-196.
  55. Blume PA, Walters J, Payne W, et al. Comparison of negative pressure wound therapy using vacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers: A multicenter randomized controlled trial. Diabetes Care. 2008;31(4):631-636.
  56. Ubbink DT, Westerbos SJ, Evans D, et al. Topical negative pressure for treating chronic wounds. Cochrane Database Syst Rev. 2008;(3):CD001898.
  57. Vikatmaa P, Juutilainen V, Kuukasjärvi P, et al. Negative pressure wound therapy: A systematic review on effectiveness and safety. Eur J Vasc Endovasc Surg. 2008;36(4):438-448.
  58. Bee TK, Croce MA, Magnotti LJ, et al. Temporary abdominal closure techniques: A prospective randomized trial comparing polyglactin 910 mesh and vacuum-assisted closure. J Trauma. 2008;65(2):337-342.
  59. Expert Working Group. Vacuum assisted closure: Recommendations for use. A consensus document. Int Wound J. 2008;5 Suppl 4:iii-19.
  60. Bovill E, Banwell PE, Teot L, et al; International Advisory Panel on Topical Negative Pressure. Topical negative pressure wound therapy: A review of its role and guidelines for its use in the management of acute wounds. Int Wound J. 2008;5(4):511-529.
  61. Sumpio BE, Allie DE, Horvath KA, et al. Role of negative pressure wound therapy in treating peripheral vascular graft infections. Vascular. 2008;16(4):194-200.
  62. Baharestani MM, Houliston-Otto DB, Barnes S. Early versus late initiation of negative pressure wound therapy: Examining the impact on home care length of stay. Ostomy Wound Manage. 2008;54(11):48-53.
  63. Baharestani MM, Driver VR, de Leon JM, et al. Optimizing clinical and cost effectiveness with early intervention of v.a.c.(R) therapy. Ostomy Wound Manage. 2008;54(11):1-15.
  64. Sadat U, Chang G, Noorani A, et al. Efficacy of TNP on lower limb wounds: A meta-analysis. J Wound Care. 2008;17(1):45-48.
  65. Sullivan N, Snyder DL, Tipton K, et al. Negative pressure wound therapy devices. Technology Assessment Report. Prepared by the ECRI Evidence-based Practice Center for the Agency for Healthcare Research and Quality (AHRQ), Contract No. 290-2007-10063. Project ID: WNDT1108. Rockville, MD: AHRQ; March 30, 2009.
  66. Gregor S, Maegele M, Sauerland S, et al. Negative pressure wound therapy: A vacuum of evidence? Arch Surg. 2008;143(2):189-196.
  67. Ubbink DT, Vermeulen H, Segers P, Goslings JC. Negative pressure therapy for surgical wounds. Ned Tijdschr Geneeskd. 2009;153:A365.
  68. Open Abdomen Advisory Panel, Campbell A, Chang M, Fabian T, et al. Management of the open abdomen: From initial operation to definitive closure. Am Surg. 2009;75(11 Suppl):S1-S22.
  69. National Institute for Health and Clinical Excellence (NICE). Negative pressure wound therapy for the open abdomen. Interventional Procedure Guidance 322. London, UK: NICE; December 2009.
  70. Ritchie K, Abbotts J, Downie S, et al. Topical negative pressure therapy for wounds. HTA Report 12. Glasgow, Scotland: Quality Improvement Scotland (NHS QIS ); 2010.
  71. Pliakos I, Papavramidis TS, Mihalopoulos N, et al. Vacuum-assisted closure in severe abdominal sepsis with or without retention sutured sequential fascial closure: A clinical trial. Surgery. 2010;148(5):947-953.
  72. Scimeca CL, Bharara M, Fisher TK, et al. Novel use of insulin in continuous-instillation negative pressure wound therapy as "wound chemotherapy". J Diabetes Sci Technol. 2010a;4(4):820-824.
  73. Scimeca CL, Bharara M, Fisher TK, et al. Novel use of doxycycline in continuous-instillation negative pressure wound therapy as "wound chemotherapy". Foot Ankle Spec. 2010b;3(4):190-193.
  74. Xie X, McGregor M. Negative Pressure wound therapy (NPWT). Update to Report 19. Report No. 48. Montreal, QC: Technology Assessment Unit of the McGill University Health Centre (MUHC); 2010.
  75. Xie X, McGregor M, Dendukuri N. The clinical effectiveness of negative pressure wound therapy: A systematic review. J Wound Care. 2010;19(11):490-495.
  76. Health Technology Inquiry Service (HTIS). Negative pressure therapy for patients infected wounds: A review of the clinical and cost-effectiveness evidence and recommendations for use. Ottawa, ON: Canadian Agency for Drugs and Technologies in Health (CADTH): July 14, 2010.
  77. Ontario Ministry of Health and Long-term Care, Medical Advisory Secretariat (MAS). Negative pressure wound therapy: An evidence update. Ontario Health Technology Assessment Series. Toronto, ON: MAS; 2010;10(22).
  78. National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel. Pressure ulcer treatment recommendations. In: Prevention and treatment of pressure ulcers: Clinical practice guideline. Washington, DC: National Pressure Ulcer Advisory Panel; 2009.
  79. U.S. Food and Drug Administration. Medical devices; general and plastic surgery devices; classification of non-powered suction apparatus device intended for negative pressure wound therapy. Final rule. Fed Regist. 2010;75(221):70112-70114.
  80. Suissa D, Danino A, Nikolis A. Negative-pressure therapy versus standard wound care: A meta-analysis of randomized trials. Plast Reconstr Surg. 2011;128(5):498e-503e.
  81. Vig S, Dowsett C, Berg L, et al; International Expert Panel on Negative Pressure Wound Therapy [NPWT-EP]. Evidence-based recommendations for the use of negative pressure wound therapy in chronic wounds: Steps towards an international consensus. J Tissue Viability. 2011;20 Suppl 1:S1-S18.
  82. ECRI Institute. FDA warns of bleeding, infection related to negative-pressure wound therapy. Health Technology Trends. 2011;23(6):4-5, 8.
  83. Webster J, Scuffham P, Sherriff KL, et al. Negative pressure wound therapy for skin grafts and surgical wounds healing by primary intention. Cochrane Database Syst Rev. 2012;(4):CD009261.
  84. Roberts DJ, Zygun DA, Grendar J, et al. Negative-pressure wound therapy for critically ill adults with open abdominal wounds: A systematic review. J Trauma Acute Care Surg. 2012;73(3):629-639.
  85. Dumville JC, Munson C. Negative pressure wound therapy for partial-thickness burns. Cochrane Database Syst Rev. 2012;(12):CD006215.
  86. Fraccalvieri M, Sarno A, Gasperini S, et al. Can single use negative pressure wound therapy' be an alternative method to manage keloid scarring? A preliminary report of a clinical and ultrasound/colour-power-doppler study. Int Wound J. 2013;10(3):340-344.
  87. van den Bulck R, Siebers Y, Zimmer R, et al. Initial clinical experiences with a new, portable, single-use negative pressure wound therapy device. Int Wound J. 2013;10(2):145-151.
  88. Gabriel A, Thimmappa B, Rubano C, Storm-Dickerson T. Evaluation of an ultra-lightweight, single-patient-use negative pressure wound therapy system over dermal regeneration template and skin grafts. Int Wound J. 2013;10(4):418-424.
  89. Dowsett C, Grothier L, Henderson V, et al. Venous leg ulcer management: Single use negative pressure wound therapy. Br J Community Nurs. 2013;Suppl:S6, S8-10, S12-S15.
  90. Sharp E. Single-use NPWT for the treatment of complex orthopaedic surgical and trauma wounds. J Wound Care. 2013;22(10 Suppl):S5-S9.
  91. National Institute for Health and Clinical Excellence (NICE). Negative pressure wound therapy for the open abdomen. Interventional Procedure Guidance 467. London, UK: NICE; November 2013.


email this page   


Copyright Aetna Inc. All rights reserved. Clinical Policy Bulletins are developed by Aetna to assist in administering plan benefits and constitute neither offers of coverage nor medical advice. This Clinical Policy Bulletin contains only a partial, general description of plan or program benefits and does not constitute a contract. Aetna does not provide health care services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Aetna or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. This Clinical Policy Bulletin may be updated and therefore is subject to change.
Aetna
Back to top