Close Window
Aetna Aetna
Clinical Policy Bulletin:
Fiberoptic Endoscopic Evaluation of Swallowing (FEES)/Fiberoptic Endoscopic Evaluation of Swallowing with Sensory Testing (FEESST)
Number: 0248


Policy

  1. Aetna considers both fiberoptic endoscopy and videofluoroscopy medically necessary for evaluation of swallowing function.

    Fiberoptic endoscopic evaluation of swallowing (FEES) is the preferred test over videofluoroscopy in the evaluation of a swallowing disorder in any of the following conditions:

    1. A more conservative examination than videofluoroscopy is required because of concerns about aspiration of barium, food, and/or liquid; or
    2. Need to assess fatigue or swallowing status over a meal; or
    3. Repeat examination to assess change; to assess effectiveness or need for maneuvers; or
    4. Severe dysphagia with very weak or possibly absent swallow reflex and/or very limited ability to tolerate any aspiration (e.g., brainstem stroke, member tube-fed for prolonged period, very poor pulmonary status, or, poor immunologic status); or
    5. Therapeutic examination that requires time to try out several maneuvers, several consistencies, etc. (e.g., want to try real foods; want parent to hold baby in several positions; or want to try biofeedback); or
    6. To visualize the larynx directly for signs of trauma or neurological damage and assess laryngeal competence post-intubation or post-surgery (especially with coronary artery bypass grafting, carotid endarterectomy, or any surgery where the recurrent laryngeal nerve was vulnerable); or
    7. When positioning for fluoroscopy is problematic (e.g., member bedridden, weak, has contractures, in pain, has decubitus ulcers, quadriplegic, wearing neck halo, obese, or, on ventilator); or
    8. When there is a suspicion that laryngeal competence may be compromised in a member with a tracheostomy; or
    9. When transportation to fluoroscopy is problematic (e.g., medically fragile/unstable member in an intensive care unit, cardiac or other monitoring in place, on ventilator, or, nursing/medical care must be with member); or
    10. When transportation to the hospital is problematic (e.g., nursing home issues, including cost of transportation, resources needed to accompany member, strain on member, or, member fearful of leaving familiar surroundings, etc.).
       
  2. Aetna considers the sensory testing component (also known as “endoscopic air pulse stimulation”) of fiberoptic endoscopic evaluation of swallowing with sensory testing (FEESST) medically necessary for the evaluation of members with persistent dysphagia who meet criteria for FEES above.



Background

Oropharyngeal dysphagia is usually either a primary abnormality related to structural aberrations of the oropharynx or a secondary manifestation of neuromuscular disease.  Causes for dysfunctional swallowing are protean.  Both diagnosis and therapy of oropharyngeal dysphagia are based on functional assessment.  Following the performance of a clinical examination, instrumental work-up includes evaluating specific aspects of swallowing function, judging the consequences of the swallowing dysfunction, and assessing factors that may be contributing to swallowing dysfunction.

Videofluoroscopy has long been viewed as the "gold standard" for evaluation of a swallowing disorder for the comprehensive information it provides.  However, it is not very efficient and accessible in certain clinical and practical situations.  Fiberoptic endoscopic evaluation of swallowing (FEES) has been shown to be safe and effective for assisting in swallowing evaluation, and in therapy as a visual display to help patients learn various swallowing maneuvers.

In FEES, a flexible fiberoptic endoscope is introduced transnasally to the patient's hypopharynx where the clinician can clearly view laryngeal and pharyngeal structures.  The patient is then led through various tasks to evaluate the sensory and motor status of the pharyngeal and laryngeal mechanism.  Food and liquid boluses are then given to the patient so that the integrity of the pharyngeal swallow can be determined.  Information obtained from this examination includes ability to protect the airway, the ability to sustain airway protection for a period of several seconds, the ability to initiate a prompt swallow without spillage of material into the hypopharynx, timing and direction of movement of the bolus through the hypopharynx, ability to clear the bolus during the swallow, presence of pooling and residue of material in the hypopharynx, timing of bolus flow and airway protection, sensitivity of the pharyngeal/laryngeal structures and the effect of anatomy on the swallow.

Appropriate postural changes and swallowing maneuvers are attempted to detect problems and enable the examiner to make recommendations regarding optimal interventions to improve the safety and efficiency of the swallow, the advisability of oral feeding, and use of appropriate behavioral strategies that facilitate safe and efficient swallowing.  The most critical finding is aspiration, and the literature demonstrates that FEES is able to detect this finding with good sensitivity.

Fiberoptic endoscopic evaluation of swallowing with sensory testing (FEESST) is an alternative to modified barium swallow evaluation of patients at risk for aspiration.  The procedure entails the passage of a specially equipped flexible endoscope into the oropharynx.  The special equipment includes a sensory stimulator that allows quantification of stimuli, a television monitor, a video printer, and a videocassette recorder.  Sensory evaluation is performed by administering pulses of air at sequentially increased pressures to elicit the laryngeal adductor reflex.  Motor evaluation is carried out by delivering various food items with different consistencies while factors such as oral transit time, inhibition of swallowing, laryngeal elevation, spillage, residue, condition of swallow, laryngeal closure, reflux, aspiration, and ability to clear residue, are monitored.

A randomized controlled clinical outcome study of FEESST by Aviv et al (2000) found no significant difference in rates of pneumonia in dysphagic patients evaluated with modified barium swallow and dysphagic patients evaluated with FEESST.  The use of laryngopharyngeal sensory testing is controversial.  The Veterans Health Administration, Department of Defense (2003) clinical practice guideline for the management of stroke rehabilitation in the primary care setting concluded that “[t]here is insufficient evidence to recommend for or against fiber-optic endoscopic examination of swallowing with sensory testing (FEESST) for the assessment of dysphagia”.  The evidence review stated that the overall quality of evidence supporting FEESST is “poor”.  An evidence-based guideline on dysphagia from the Scottish Intercollegiate Guidelines Network (SIGN, 2004) concluded that "[l]aryngopharyngeal testing has also been described but insufficient evidence was identified to recommend it".  Current clinical guidelines on stroke from the Royal College of Physicians (2004) recommend FEES or some other instrumental investigation to allow visualization of the pharynx in persons who have persistent dysphagia.  Although FEESST is listed in an appendix to these guidelines, the guidelines make no recommendation for its use. 

 
CPT Codes / HCPCS Codes / ICD-9 Codes
CPT codes covered if selection criteria are met:
74230
92610
92611
92612
92613
92614
92615
92616
92617
Other CPT codes related to the CPB:
92526
ICD-9 codes covered if selection criteria are met (not all-inclusive):
433.00 - 436 Occlusion and stenosis precerebral arteries, occlusion of cerebral arteries, transient cerebral ischemia, and acute, but ill-defined, cerebrovascular disease
438.82 Other late effects of cerebrovascular disease, dysphagia
478.79 Other diseases of larynx, not elsewhere classified
507.0 Pneumonitis due to inhalation of food or vomitus
530.0 Achalasia and cardiospasm
530.5 Dyskinesia of esophagus
530.81 Esophageal reflux
530.89 Other specified disorders of esophagus
748.3 Other anomalies of larynx, trachea, and bronchus
783.3 Feeding difficulties and mismanagement
787.2 Dysphagia


The above policy is based on the following references:
  1. Lefton-Greif MA, Loughlin GM. Specialized studies in pediatric dysphagia. Semin Speech Lang. 1996;17(4):311-329. 
  2. Kahrilas PJ. Current investigation of swallowing disorders. Baillieres Clin Gastroenterol. 1994;8(4):651-664. 
  3. Koch WM. Swallowing disorders. Diagnosis and therapy. Med Clin North Am. 1993;77(3):571-582. 
  4. Wu CH, Hsiao TY, Chen JC, et al. Evaluation of swallowing safety with fiberoptic endoscope: Comparison with videofluoroscopic technique. Laryngoscope. 1997;107(3):396-401. 
  5. Bastian RW. The videoendoscopic swallowing study: An alternative and partner to the videofluoroscopic swallowing study. Dysphagia. 1993;8(4):359-367. 
  6. Kidder TM, Langmore SE, Martin BJ. Indications and techniques of endoscopy in evaluation of cervical dysphagia: Comparison with radiographic techniques. Dysphagia. 1994;9(4):256-261. 
  7. American Speech-Language-Hearing Association, Ad Hoc Committee on Advances in Clinical Practice. Instrumental diagnostic procedures for swallowing. ASHA Suppl. 1992;34 (7):25-33.
  8. American Speech-Language-Hearing Association. Ad Hoc Committee on Advances in Clinical Practice. Sedation and topical anesthetics in audiology and speech-language pathology. ASHA Suppl. 1992;34(7):41-42. 
  9. Langmore S, Schatz K, Olson N. Fiberoptic endoscopic examination of swallowing safety: A new procedure. Dysphagia. 1988;2:216-219. 
  10. Langmore S, Schatz K, Olson N. Endoscopic and videofluoroscopic evaluations of swallowing and aspiration. Ann Otol Rhin Laryn. 1991;100(8):678-681. 
  11. Langmore SE, Schatz K, Olson N. Endoscopic and videofluoroscopic evaluations of swallowing and aspiration. Ann Otol Rhinol Laryngol. 1991;100(8):678-681.  
  12. Leder SB. Serial fiberoptic endoscopic swallowing evaluations in the management of patients with dysphagia. Arch Phys Med Rehabil. 1998;79(10):1264-1269. 
  13. Leder SB. Fiberoptic endoscopic evaluation of swallowing in patients with acute traumatic brain injury. J Head Trauma Rehabil. 1999;14(5):448-453. 
  14. Leder SB, Karas DE. Fiberoptic endoscopic evaluation of swallowing in the pediatric population. Laryngoscope. 2000;110(7):1132-1136. 
  15. Leder SB, Sasaki CT, Burrell MI. Fiberoptic endoscopic evaluation of dysphagia to identify silent aspiration. Dysphagia. 1998;13(1):19-21.
  16. Leder SB, Espinosa JF. Aspiration risk after acute stroke: Comparison of clinical examination and fiberoptic endoscopic evaluation of swallowing. Dysphagia. 2002;17(3):214-218.   
  17. Cook IJ, Kahrilas PJ. AGA technical review on management of oropharyngeal dysphagia. Gastroenterology. 1999;116(2):455-478.
  18. Schroter-Morasch H, Bartolome G, Troppmann N, et al. Values and limitations of pharyngolaryngoscopy (transnasal, transoral) in patients with dysphagia. Folia Phoniatr Logop. 1999;51(4-5):172-182. 
  19. Ajemian MS, Nirmul GB, Anderson MT, et al. Routine fiberoptic endoscopic evaluation of swallowing following prolonged intubation: Implications for management. Arch Surg. 2001;136(4):434-437. 
  20. ECRI Evidence-Based Practice Center. Diagnosis and treatment of swallowing disorders (dysphagia) in acute-care stroke patients. Evidence Report/Technology Assessment No. 8. Prepared for the Agency for Health Care Policy and Research (AHCPR). Contract No. 290-97-0020. AHCPR Publication No. 99-E024. Rockville, MD: AHCPR; July 1999.
  21. Colodny N. Interjudge and intrajudge reliabilities in fiberoptic endoscopic evaluation of swallowing (fees) using the penetration-aspiration scale: A replication study. Dysphagia. 2002;17(4):308-315.
  22. Cohen MA, Setzen M, Perlman PW, et al. The safety of flexible endoscopic evaluation of swallowing with sensory testing in an outpatient otolaryngology setting. Laryngoscope. 2003;113(1):21-24.
  23. Perlman PW, Cohen MA, Setzen M, et al. The risk of aspiration of pureed food as determined by flexible endoscopic evaluation of swallowing with sensory testing. Otolaryngol Head Neck Surg. 2004;130(1):80-83.
  24. Setzen M, Cohen MA, Perlman PW, et al. The association between laryngopharyngeal sensory deficits, pharyngeal motor function, and the prevalence of aspiration with thin liquids. Otolaryngol Head Neck Surg. 2003;128(1):99-102.
  25. Setzen M, Cohen MA, Mattucci KF, et al. Laryngopharyngeal sensory deficits as a predictor of aspiration. Otolaryngol Head Neck Surg. 2001;124(6):622-624.
  26. Aviv JE, Kim T, Sacco RL, et al. FEESST: A new bedside endoscopic test of the motor and sensory components of swallowing. Ann Otol Rhinol Laryngol. 1998;107(5 Pt 1):378-387. 
  27. Aviv JE, Sataloff RT, Cohen M, et al. Cost-effectiveness of two types of dysphagia care in head and neck cancer: A preliminary report. Ear Nose Throat J. 2001;80(8):553-556, 558.
  28. Aviv JE, Parides M, Fellowes J, Close LG. Endoscopic evaluation of swallowing as an alternative to 24-hour pH monitoring for diagnosis of extraesophageal reflux. Ann Otol Rhinol Laryngol Suppl. 2000;184:25-27.
  29. Aviv JE. Prospective, randomized outcome study of endoscopy versus modified barium swallow in patients with dysphagia. Laryngoscope. 2000;110(4):563-574.
  30. Aviv JE, Kaplan ST, Thomson JE, et al. The safety of flexible endoscopic evaluation of swallowing with sensory testing (FEESST): An analysis of 500 consecutive evaluations. Dysphagia. 2000;15(1):39-44.
  31. Aviv JE, Kim T, Thomson JE, et al. Fiberoptic endoscopic evaluation of swallowing with sensory testing (FEESST) in healthy controls. Dysphagia. 1998;13(2):87-92.
  32. Aviv JE, Spitzer J, Cohen M, et al. Laryngeal adductor reflex and pharyngeal squeeze as predictors of laryngeal penetration and aspiration. Laryngoscope. 2002;112(2):338-341.
  33. Aviv JE, Liu H, Parides M, et al. Laryngopharyngeal sensory deficits in patients with laryngopharyngeal reflux and dysphagia. Ann Otol Rhinol Laryngol. 2000;109(11):1000-1006.
  34. Aviv JE. Clinical assessment of pharyngolaryngeal sensitivity. Am J Med. 2000;108 Suppl 4a:68S-72S.
  35. Aviv JE, Martin JH, Kim T, et al. Laryngopharyngeal sensory discrimination testing and the laryngeal adductor reflex. Ann Otol Rhinol Laryngol. 1999;108(8):725-730.
  36. Aviv JE. Effects of aging on sensitivity of the pharyngeal and supraglottic areas. Am J Med. 1997;103(5A):74S-76S.
  37. Aviv JE, Sacco RL, Mohr JP, et al. Laryngopharyngeal sensory testing with modified barium swallow as predictors of aspiration pneumonia after stroke. Laryngoscope. 1997;107(9):1254-1260.
  38. Aviv JE, Sacco RL, Thomson J, et al. Silent laryngopharyngeal sensory deficits after stroke. Ann Otol Rhinol Laryngol. 1997;106(2):87-93.
  39. Aviv JE, Martin JH, Keen MS, et al. Air pulse quantification of supraglottic and pharyngeal sensation: A new technique. Ann Otol Rhinol Laryngol. 1993;102(10):777-780.
  40. Aviv JE, Martin JH, Jones ME, et al. Age-related changes in pharyngeal and supraglottic sensation. Ann Otol Rhinol Laryngol. 1994;103(10):749-752.
  41. Thompson DM. Laryngopharyngeal sensory testing and assessment of airway protection in pediatric patients. Am J Med. 2003;115 Suppl 3A:166S-168S.
  42. Thompson-Link D, Willging JP, Miller CK, et al. Pediatric laryngopharyngeal sensory testing during flexible endoscopic evaluation of swallowing: Feasible and correlative. Ann Otol Rhinol Laryngol. 2000;109(10 Pt 1):899-905.
  43. Veterans Health Administration, Department of Defense. VA/DoD clinical practice guideline for the management of stroke rehabilitation in the primary care setting. VA/DoD Clinical Practice Guidelines. Washington, DC: Department of Veteran Affairs; February 2003.
  44. Scottish Intercollegiate Guidelines Network (SIGN). Management of patients with stroke: Identification and management of dysphagia. A National Clinical Guideline. Guideline No. 78. Edinburgh, UK: SIGN; September 2004. Available at: http://www.sign.ac.uk/guidelines/published/index.html#CHD. Accessed October 8, 2004.
  45. Willging JP, Thompson DM. Pediatric FEESST: Fiberoptic endoscopic evaluation of swallowing with sensory testing. Curr Gastroenterol Rep. 2005;7(3):240-243.
  46. Royal College of Physicians (RCP), Clinical Effectiveness and Evaluation Unit. National Clinical Guidelines for Stroke. 2nd ed. London, UK: RCP; June 2004. Available at: http://www.rcplondon.ac.uk/pubs/books/stroke/stroke_guidelines_2ed.pdf. Accessed April 5, 2006.
  47. Tabaee A, Johnson PE, Gartner CJ, et al. Patient-controlled comparison of flexible endoscopic evaluation of swallowing with sensory testing (FEESST) and videofluoroscopy. Laryngoscope. 2006;116(5):821-825.
  48. Leder SB, Bayar S, Sasaki CT, Salem RR. Fiberoptic endoscopic evaluation of swallowing in assessing aspiration after transhiatal esophagectomy. J Am Coll Surg. 2007;205(4):581-585.
  49. Kelly AM, Drinnan MJ, Leslie P. Assessing penetration and aspiration: How do videofluoroscopy and fiberoptic endoscopic evaluation of swallowing compare? Laryngoscope. 2007;117(10):1723-1727.
  50. Rodriguez KH, Roth CR, Rees CJ, Belafsky PC. Reliability of the pharyngeal squeeze maneuver. Ann Otol Rhinol Laryngol. 2007;116(6):399-401.
  51. Warnecke T, Teismann I, Meimann W, et al. Assessment of aspiration risk in acute ischaemic stroke -- evaluation of the simple swallowing provocation test. J Neurol Neurosurg Psychiatry. 2008;79(3):312-314.
  52. Bader CA, Niemann G. Dysphagia in children and young persons. The value of fiberoptic endoscopic evaluation of swallowing. HNO. 2008;56(4):397-401.
  53. Warnecke T, Ritter MA, Kroger B, et al. Fiberoptic endoscopic dysphagia severity scale predicts outcome after acute stroke. Cerebrovasc Dis. 2009;28(3):283-289.
  54. Warnecke T, Teismann I, Oelenberg S, et al. The safety of fiberoptic endoscopic evaluation of swallowing in acute stroke patients. Stroke. 2009;40(2):482-486.
  55. Bours GJ, Speyer R, Lemmens J, et al. Bedside screening tests vs. videofluoroscopy or fibreoptic endoscopic evaluation of swallowing to detect dysphagia in patients with neurological disorders: Systematic review. J Adv Nurs. 2009;65(3):477-493.
  56. da Silva AP, Lubianca Neto JF, Santoro PP. Comparison between videofluoroscopy and endoscopic evaluation of swallowing for the diagnosis of dysphagia in children. Otolaryngol Head Neck Surg. 2010;143(2):204-209.
  57. Schindler A, Ginocchio D, Peri A, et al. FEESST in the rehabilitation of dysphagia after partial laryngectomy. Ann Otol Rhinol Laryngol. 2010;119(2):71-76.
  58. Hey C, Pluschinski P, Stanschus S, et al. A documentation system to save time and ensure proper application of the fiberoptic endoscopic evaluation of swallowing (FEES®). Folia Phoniatr Logop. 2011;63(4):201-208.
  59. Umay EK, Unlu E, Saylam GK, et al. Evaluation of dysphagia in early stroke patients by bedside, endoscopic, and electrophysiological methods. Dysphagia. 2013;28(3):395-403.
  60. Bax L, McFarlane M, Green E, Miles A. Speech-language pathologist-led fiberoptic endoscopic evaluation of swallowing: Functional outcomes for patients after stroke. J Stroke Cerebrovasc Dis. 2013 Dec 18. [Epub ahead of print]


email this page   


Copyright Aetna Inc. All rights reserved. Clinical Policy Bulletins are developed by Aetna to assist in administering plan benefits and constitute neither offers of coverage nor medical advice. This Clinical Policy Bulletin contains only a partial, general description of plan or program benefits and does not constitute a contract. Aetna does not provide health care services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Aetna or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. This Clinical Policy Bulletin may be updated and therefore is subject to change.
Aetna
Back to top