Close Window
Aetna Aetna
Clinical Policy Bulletin:
Plantar Fasciitis Treatments
Number: 0235


Policy

Aetna considers endoscopic plantar fasciotomy medically necessary as an alternative to conventional open plantar fasciotomy for members with intractable plantar fasciitis or heel spur syndrome who have failed a 6-month trial of conservative therapy.

Aetna considers extracorporeal shock-wave therapy (ESWT) with the OssaTron (HealthTronics, Marietta, GA), the Dornier Epos Ultra (Dornier Medical Systems, Kennesaw, GA), the Sonocur (Siemens Medical Solutions Inc., Iselin, NJ), the Orbasone Pain Relief System (Orthometrix, Inc., White Plains, NY), the OrthospecTM Extracorporeal Shock Wave Therapy (Medispec, Ltd., Germantown, MD), or any other ESWT devices experimental and investigational for plantar fasciitis because their effectiveness has not been established. 

Aetna considers the following approaches (not an all inclusive list) experimental and investigational for members with plantar fasciitis because there is a lack of reliable published literature documenting the safety and efficacy of these techniques in the treatment of plantar fasciitis:

  • Autologous blood injection
  • Botulinum toxin
  • Cryosurgery (cryotherapy),
  • Intracorporeal pneumatic shock therapy
  • Marrow stimulation techniques (microfracture, drilling)
  • Platelet rich plasma
  • Pulsed radiofrequency electromagnetic field therapy
  • Radiofrequency lesioning
  • Radiotherapy
  • Trigger point dry needling.

Note: Heel cushions/pads, night splints, shoe modifications, or orthopedic shoes for plantar fasciitis are not covered under plans that exclude orthopedic shoes, foot orthotics, and other supportive devices of the feet.  Members should refer to their benefit plan documents for applicable terms and conditions.  See CPB 0451 - Foot Orthotics.  



Background

Plantar fasciitis is defined as the traction degeneration of the plantar fascia at its origin on the heel.  Plantar fasciitis is the most common cause of chronic heel pain.  It is usually caused by bone spurs or inflammation of the foot's connective tissue and the condition may be resistant to conservative treatment.  Conservative treatments for plantar fasciitis include rest, physical therapy, heel cushions, non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroid injections, taping, foot orthotics (2nd line conservative treatment), shoe modifications, night splinting, and casting.

Surgical intervention may be indicated for patients who fail conservative treatment.  Well-designed placebo- or sham-controlled clinical trials for plantar fasciitis are especially important because: (i) most cases of plantar fascial pain resolve spontaneously over time; and (ii) pain is a symptom that is especially susceptible to placebo effects.

Radiofrequency lesioning is used to ablate pain pathways and is generally employed for intractable pain that has not responded to conservative measures.  Radiofrequency lesioning is not an established procedure for the treatment of plantar fasciitis.

Most recently, extracorporeal shock wave therapy (ESWT) has been used to treat plantar fasciitis.  Extracorporeal shock wave therapy is thought to relieve pain by disrupting scar tissue, causing microscopic damage to that tissue.  This induces new blood vessel formation into the injured area and facilitates the healing process.

The Dornier EPOS Ultra is an ESWT system that uses electromagnetic energy to generate a shock wave, which travels through a water-filled coupling cushion mounted to a therapy head.  The therapy head has an acoustic lens to focus the shock wave treatment on the target tissue.  The EPOS Ultra also has an ultrasound imaging system that is used to observe and monitor the shock wave treatment.  Typically, 3,800 shock waves are delivered over 20 mins.

In support of their pre-market approval application (PMA), a randomized, double-blind, sham-treatment-controlled study was conducted involving 150 adult patients with chronic plantar fasciitis enrolled at 6 clinical centers.  Patients had at least moderate pain (visual analog score [VAS] greater than 5) for at least 6 months and a history of prior conservative therapy (including NSAIDs and 2 other conservative therapies).  After being randomized to active or sham treatment groups, patients underwent a single ESWT session, and were followed for 12 months.  After 3 months, patients who received sham treatment were offered active unmasked treatment.  To maintain physician blinding during the first 3 months of the study, the treatment was administered by a physician who did not perform the follow-up evaluations.

Although there was a modest, statistically significant difference in improvement in VAS pain scores from baseline (the primary study endpoint) between active and sham treatment groups at 3 months, this was not accompanied by a significant improvement of function.  In the active group, the pain score decreased by an average of 56.5 % by the end of 3 months; in the sham group, the average pain score decreased by 46.6 %.  Patients in the active group were more likely (56 %) than patients in the sham group (45 %) to report an improvement in VAS pain scores of 60 % or more from baseline; however, this difference was not statistically significant.  There was a statistically significant difference in patient satisfaction (Roles and Maudsley pain scores) between treatment groups, with 62 % of active patients with good to excellent results, compared to 40 % of sham patients.  However, there was no statistically significant difference between active and placebo groups with respect to function (AOFAS Ankle-Hindfoot Scale (a validated rating scale which incorporates assessment of function (50 %), pain (40 %), and alignment (10 %)).  There was also no statistically significant difference between active and placebo treated groups with respect to a measure of general health status (SF12 Health Status Questionnaire (patient's self-assessment of general health status and mental condition)).

The most common complication was pain during treatment, which occurred in 72.4 % of active patients and 6.8 % of sham patients.  The investigators assessed the likelihood that patient blinding was maintained during the study, given difference in treatment-induced pain between active and sham treatments.  After the ESWT session, the investigators asked patients in each treatment group whether they experienced pain during treatment, and had them guess as to whether they had been assigned to active or sham treatment.  Sixty percent of patients in the active group correctly guessed that they received active treatment, and 40 % were unsure.  In the sham group, 15 % of patients correctly guessed that they received sham treatment, and 85 % believed that they received an active treatment or were unsure.  Active patients who reported pain during treatment were more likely to have correctly guessed their assignment than active patients who reported no pain; however, there was no significant difference at follow-up in change in VAS score from baseline between active patients who believed they received active treatment and active patients who believed they received a sham treatment.

Other complications included pain 3 to 5 days after treatment, which was reported in 41 % of patients in the active group; however, there was no statistically significant difference between active and sham groups, as 35 % of patients in the sham group also reported pain 3 to 5 days after treatment.  Other than pain during treatment, there were no significant differences in the nature or type of adverse events reported between active and sham treatment groups.

The OssaTron uses an electrohydraulic method of generating shock waves, which are focused so that they converge at a point near the surface of the foot.  Typically, 1,500 shocks are necessary for treatment, which is performed on an outpatient surgical center under local or general anesthesia.

In support of their pre-market application, the manufacturer of the OssaTron submitted to the Food and Drug Administration (FDA) the results of a clinical trial involving 300 patients with plantar fasciitis that was not adequately responsive to conservative treatments.  Patients were randomly assigned to the active extracorporeal shock wave therapy or sham treatment.  Patients were evaluated on the 4 following criteria: (i) investigator assessment of heel pain, with positive response defined as greater than 50 % improvement over baseline and a VAS score of 4 or less on a 10-point scale; (ii) the patient's self-assessment of pain, with a positive response defined as greater than 50 % improvement over baseline and a VAS score of less than 4; (iii) the patient's self-assessment of activity, with a positive response defined as improvement of 1 point on a 5-point scale, or maintenance of a baseline score of 0 or 1; and (iv) use of pain medications, with a positive response defined as no use of pain medications for heel pain.  After 12 weeks, the only clinically significant difference between active and sham treatments was in the investigator assessment of heel pain: 46 % of the OssaTron-treated patients and 30 % of the sham-treated patients had an improvement of more than 5.0 units on a 10-unit VAS at 12 weeks, as assessed by the investigator.  However, the self-assessed pain score showed only marginal differences between the treatment and placebo groups, and the other 2 endpoints -- self-assessment of activity and use of pain medications -- were not statistically different between the 2 groups.  Side effects of Ossatron ESWT included nerve complications (nerve irritation, numbness) in 6 patients and plantar fascial tears in 2 patients.  The FDA is requiring a study to further evaluate these adverse effects.

In a randomized controlled study (n = 160), Buchbinder et al (2002) found no evidence to support a beneficial effect on pain, function, and quality of life of ultrasound-guided ESWT over placebo in patients with ultrasound-proven plantar fasciitis 6 and 12 weeks following treatment.  Commenting on the results of the study by Buchbinder and colleagues, Ham and Strayer (2002) stated that "[e]xtracorporeal shock wave therapy cannot be recommended to improve pain and function in patients with plantar fasciitis based on the results of this study.  Although previous studies do report a benefit from ESWT, this study appears to represent a higher level of evidence than was previously available for evaluating the efficacy of this therapy.  An updated meta-analysis combining all the studies on ESWT will be useful".

Aetna's policy on the unproven status of ESWT for plantar fasciitis is supported by the conclusions of more than 12 systematic evidence reviews, including those from national and international authorities (including the Cochrane Collaboration (Crawford and Thomson, 2010), BMJ Clinical Evidence (Landorf and Menz, 2007), the Washington State Department of Labor and Industries (2003), the BlueCross BlueShield Association Technology Evaluation Center (2003, 2005), the Institute for Clinical Systems Improvement (2004), the California Technology Assessment Forum (Tice, 2004; CTAF, 2007; CTAF, 2009), the National Institute for Health and Clinical Excellence (2005), BMC Musculoskeletal Disorders (Thomson et al, 2005), the Canadian Agency for Drugs and Technologies in Health (Ho, 2007), and the Galacian Agency for Health Technology Assessment (Ruano-Ravina, 2004)), and from other investigator groups (Cole et al, 2005; Buchbinder, 2004; Burton and Overend, 2005; Boddeker et al, 2004; and Atkins et al, 1999).

These systematic evidence reviews of ESWT for plantar fasciitis have concluded that the effectiveness of this intervention is unknown.  Pain associated with ESWT and differences in procedures mean that blinding in placebo- or sham-controlled trials is probably not maintained.  Rajkumar and Schmitgen (2002) concluded that additional controlled studies are required to define the precise role of this new modality in the treatment of chronic plantar fasciitis.

An assessment of ESWT for plantar fasciitis conducted by the Washington State Department of Labor and Industries (2003) concluded that "the evidence establishing the effectiveness [of ESWT] for musculoskeletal conditions remains inconclusive." 

In a double-blind randomized controlled study (n = 88), Speed et al (2003) concluded that there appears to be no treatment effect of moderate dose ESWT in subjects with plantar fasciitis.  The investigators stated that further research is needed to develop evidence based recommendation for the use ESWT in musculoskeletal complaints.  This is in agreement with findings of a study by Haake et al (2003) (n = 272) who reported that ESWT is ineffective in the treatment of chronic plantar fasciitis. 

The BlueCross BlueShield Association Technology Evaluation Center (BCBSA, 2003) re-assessed ESWT for plantar fasciitis, and reversed position on the effectiveness of this therapy.  The 2003 TEC assessment stated: "[i]n summary, the available evidence consists largely of good quality studies; there are 3 double-blind, randomized controlled trials that included over 600 patients.  Overall, the results of the trials are inconclusive.  If ESWT provided a clinically significant improvement in plantar fasciitis, one would expect consistent improvement across multiple ways of measuring pain and function (e.g., morning pain, use of pain medications, ability to walk without pain).  However, the results of various measures within studies and across studies do not give a consistent picture concerning the effect of ESWT on health outcomes for plantar fasciitis.”  The TEC assessment (BCBSA, 2003) concluded that “[t]he evidence is not sufficient to permit conclusions on the health outcome effects of ESWT” for plantar fasciitis.  The BlueCross BlueShield Association Technology Evaluation Center re-affirmed their position in a subsequent assessment published in 2005 (BCBSA, 2005).

In an evidence review of plantar fasciitis treatments published in the New England Journal of Medicine, Buchbinder (2004) concluded that “the available data do not provide substantive support for [the] use” of ESWT for plantar fasciitis. 

Although recent reports seem to provide evidence that ESWT may be effective in the treatment of plantar fasciitis, there are drawbacks in these studies.  The study by Odgen et al (2004) appears to be a follow-up report on the same patients in their previous reports, providing data on 1-year and longer.  Theodore et al (2004) concluded that ESWT represents a safe treatment option for chronic plantar fasciitis.  In the study by Theodore et al, there was a significant difference (p = 0.0435) in VAS at 3-month between the 2 groups: 3.4 +/- 2.7 for the treatment group and 4.1 +/- 3.1 for the control group.  There appears to be a wide overlap of VAS between the 2 groups.  Furthermore, it is unclear whether these small differences are clinically significant as indicated by the lack of difference in VAS during the first few mins of walking in the morning between the 2 groups.  There are also no differences in AOFAS and SF-12 health status questionnaire scores between the 2 groups.  In addition, it is of note that there were no differences in Roles and Maudsley Score at 6-week follow-up between the 2 groups.  Moreover, 38.4 % of patients in the treatment group reported a fair to poor Roles and Maudsley Score at 3-month compared to only 6.3 % of their counterparts in the control group.  More importantly, it is unclear why the study was unblinded at 3 months.  It would have been interesting to have the patients in the control group remained in the original protocol and compared their results with those from the treatment group at 12-month.

A technology assessment by the Institute for Clinical Systems Improvement (2004) concluded that "[t]he scientific evidence, to date, does not permit a conclusion to be reached regarding the efficacy of ESWT for plantar fasciitis."  This is in agreement with the assessment by the BlueCross BlueShield Association’s Technology Evaluation Center (2005), which concluded that ESWT for chronic plantar fasciitis has not been demonstrated to improve health outcomes in the investigational setting.  Thus, ESWT for chronic plantar fasciitis does not meet the TEC criteria.

An assessment of ESWT for musculoskeletal disorders prepared for the California Technology Assessment Forum (CTAF) stated that ESWT for plantar fasciitis does not meet CTAF’s assessment criteria (Tice, 2004).  The assessment explained that plantar fasciitis tends to improve over extended periods of time, even for patients who have failed conservative therapy for several months.  Therefore, uncontrolled studies of ESWT for plantar fasciitis were promising, but may represent mainly the natural history of this disorder abetted by a strong placebo effect.  The CTAF assessment explained that studies with pain as the primary outcome commonly are subject to large placebo effects (Tice, 2004).  The assessment observed that, in the non-blinded randomized controlled trials of ESWT, the placebo group usually reported minimal improvements while the placebo group in the well-blinded studies reported 30 to 50 % improvements in pain scores.  The assessment stated that this observation highlights the need for high quality, double-blinded, randomized trials as the minimum standard of evidence for ESWT in plantar fasciitis.  The CTAF assessment noted that the 9 randomized controlled clinical trials of ESWT for plantar fasciitis illustrate this point (Tice, 2004).  The assessment found “a tremendous amount” of variability in the quality of the randomized trials and in the interventions studied.  The assessment found that the fair to poor quality studies demonstrated benefit compared with sham or delayed therapy, but the trials were generally small, with inadequate blinding, poor allocation concealment, and differential loss to follow-up, which could have biased the study results in favor of ESWT.  In contrast, the assessment found that the 2 good quality studies found no evidence for benefit compared with sham ESWT.

The CTAF re-assessed the evidence for ESWT for plantar fasciitis, and found that this does not meet CTAF criteria (Tice, 2009).  The CTAF assessment explained that patients with plantar fasciitis tend to improve over extended periods of time, even patients who have failed conservative therapy for months.  Therefore, the uncontrolled studies of ESWT, while promising, may represent mainly the natural history of the disorders abetted by a strong placebo effect.  Studies with pain as the primary outcome commonly are subject to large placebo effects.  The CTAF assessment observed that, in the non-blinded randomized controlled trials of ESWT, the placebo group usually reported minimal improvements, while the placebo group in the well blinded studies reported 30 to 50 % improvements in pain scores.  The CTAF assessment concluded, therefore, that high quality, double-blinded, randomized trials are the minimum standard of evidence (Tice, 2009).

The CTAF report stated that meta-analysis of the 19 randomized controlled trials of ESWT for plantar fasciitis illustrates this quite clearly (Tice, 2009).  The CTAF assessment found significant variability in the quality of the randomized trials and in the interventions studied.  However, only the quality of the studies was significantly associated with the magnitude of the benefit observed in the clinical trials.  The CTAF report observed that fair to poor quality studies demonstrated benefit compared with sham or delayed therapy, but the trials were generally small, with inadequate blinding, poor allocation concealment, and differential loss to follow-up, which could have biased the study results in favor of ESWT.  However, 2 of the 4 good quality studies found no evidence for benefit compared with sham ESWT.  Furthermore, the CTAF report found strong evidence for publication bias in the available literature.  The asymmetry of the funnel plot indicates that many small studies with negative results have been performed, but not published.  Finally, CTAF found that many different variations of ESWT were tried in these trials -- no specific device or protocol was clearly superior to the others.  The CTAF report stated that there may be a form of ESWT that effectively speeds healing of plantar fasciitis, but it remains to be defined.  The literature does not clearly support a benefit of high energy compared with low energy ESWT nor is it clear that the use of anesthesia blocks the benefits of ESWT.  "Until unequivocal benefit is consistently demonstrated in high quality clinical trials, ESWT should remain investigational" (Tice, 2009).  

It is interesting to note that a randomized controlled study (n = 125; Porter and Shadbolt, 2005) reported that corticosteroid injection is more effective and multiple times more cost-effective than ESWT in the treatment of plantar fasciopathy that has been symptomatic for more than 6 weeks.  In addition, a recent review on the use of ESWT for the treatment of orthopedic diseases (Trebinjac et al, 2005) found that results on the effectiveness of ESWT are controversial.  Studies that have claimed therapeutic benefit did not fulfill scientific criteria and randomized controlled trials were not able to confirm significant improvement after treatment with ESWT.

An assessment by the National Institute for Health and Clinical Excellence (NICE, 2005) about ESWT for plantar fasciitis reached the following conclusion: "[c]urrent evidence on extracorporeal shockwave therapy for refractory tendinopathies (specifically tennis elbow and plantar fasciitis) suggests that there are no major safety concerns.  Evidence on efficacy is conflicting, and suggests that the procedure produces little benefit apart from a placebo response in some patients.  Therefore, current evidence on efficacy does not appear adequate to support its use without special arrangements for consent, and for audit or research."

A systematic evidence review and metaanalysis for BMC Musculoskeletal Disorders (Thomson et al, 2005) reported that the results of the review did not support the use of ESWT for plantar heel pain in clinical practice.  The authors reported that ESWT was effective for the treatment of plantar heel pain, but the effect size was small; when only high-quality trials were considered, this effect was not shown to be statistically significant.

The Canadian Agency for Drugs and Technologies in Health's report on ESWT for chronic plantar fasciitis (Ho, 2007) stated that "the lack of convergent findings from randomized trials of ESWT for chronic plantar fasciitis suggests uncertainty about its effectiveness.  The evidence reviewed in this bulletin does not support the use of this technology for this condition."

A meta-analysis of ESWT for plantar fasciitis not responding to conservative therapy (2007) conducted by the CTAF (2007) concluded that the use of ESWT for the treatment of plantar fasciitis does not meet CTAF's technology assessment criteria.  Meta-analysis of the 14 randomized controlled clinical trials of ESWT for plantar fasciitis identified significant variability in the quality of the randomized trials and in the interventions studied.  The assessment found, however, that only the quality of the studies was significantly associated with the magnitude of the benefit observed in the clinical trials.  The CTAF assessment found that fair to poor quality studies demonstrated benefit compared with sham or delayed therapy, but the trials were generally small, with inadequate blinding, poor allocation concealment, and differential loss to follow-up, which could have biased the study results in favor of ESWT.  In contrast, 2 of the 3 good quality studies found no evidence for benefit compared with sham ESWT.

Tornese and co-workers (2008) compared 2 ESWT techniques for the treatment of painful subcalcaneal spur.  A total of 45 subjects with a history of at least 6 months of heel pain were studied.  Each subject received a 3-session ultrasound-guided ESWT (performed weekly).  Perpendicular technique was used in group A (n = 22, mean age of 59.3 +/- 12 years) and tangential technique was used in group B (n = 23, mean age of 58.8 +/- 12.3 years).  Mayo Clinical Scoring System was used to evaluate each subject before the treatment and at 2 and 8 months follow-up.  Mayo Clinical Scoring System pre-treatment scores were homogeneous between the groups (group A = 55.2 +/-18.7; group B = 53.5 +/- 20; p > 0.05).  In both groups there was a significant (p < 0.05) increase in the Mayo Clinical Scoring System score at 2 months (group A = 83.9 +/- 13.7; group B = 80 +/- 15.8) and 8 months (group A = 90 +/- 10.5; group B = 90.2 +/- 8.7) follow-up.  No significant differences were obtained comparing the Mayo Clinical Scoring System scores of the 2 groups at 2 and 8 months follow-up.  The authors concluded that there was no difference between the 2 techniques of using ESWT.  The tangential technique was found to be better-tolerated regarding treatment-induced pain, allowing higher energy dosages to be used.  The drawbacks of this study were lack of a control group, small sample size, and a relavely short follow-up period.

In a randomized controlled trial, Gerdesmeyer and colleagues (2008) examined the effects of radial ESWT in the treatment of chronic recalcitrant plantar fasciitis.  Three interventions of radial ESWT (0.16 mJ/mm(2); 2,000 impulses) compared with placebo were studied in 245 patients.  Primary endpoints were changes in VAS composite score from baseline to 12 weeks' follow-up, overall success rates, and success rates of the single VAS scores (heel pain at first steps in the morning, during daily activities, during standardized pressure force).  Secondary endpoints were single changes in VAS scores, success rates, Roles and Maudsley score, SF-36, and patients' and investigators' global judgment of effectiveness 12 weeks and 12 months after ESWT.  Radial ESWT proved significantly superior to placebo with a reduction of the VAS composite score of 72.1 % compared with 44.7 % (p = 0.0220), and an overall success rate of 61.0 % compared with 42.2 % in the placebo group (P = .0020) at 12 weeks.  Superiority was even more pronounced at 12 months, and all secondary outcome measures supported radial ESWT to be significantly superior to placebo (p < 0.025, 1-sided).  No relevant side effects were observed.  The authors concluded that radial ESWT significantly improves pain, function, and quality of life compared with placebo in patients with recalcitrant plantar fasciitis.  The positive findings of this study need to be validated by further investigation.

Cryosurgery is also being studied for the treatment of plantar fasciitis.  In a prospective study (Allen et al, 2007), 59 consecutive patients (61 heels), who had failed prior conservative therapy and were considered surgical candidates were treated with cryosurgery in an office setting.  Patients were evaluated on an 11-point VAS administered pre-operatively and up to 1 year of follow-up.  The mean pain rating (8.38) before cryosurgery (day 0) is statistically significant to the mean pain rating (1.26) at day 365 post-operatively.  Pain decreased significantly after the procedure (analysis of variance, p < 0.0001).  These results suggested that cryosurgery may be effective in treating patients with recalcitrant plantar fasciitis.  However, it should be noted that this was an uncontrolled study with a small sample size.  Its findings need to be validated by well-designed studies.

Niewald and associates (2008) stated that a lot of retrospective data concerning the effect of radiotherapy on plantar fasciitis is available in the literature.  Nevertheless, a randomized proof of this effect is still missing.  Thus, the GCGBD (German cooperative group on radiotherapy for benign diseases) of the DEGRO (German Society for Radiation Oncology) decided to start a randomized multi-center trial in order to find out if the effect of a conventional total dose is superior compared to that of a very low dose.  In a prospective, controlled and randomized phase III trial, 2 radiotherapy schedules were compared: (i) standard arm -- total dose 6.0 Gy in single fractions of 1.0 Gy applied twice-weekly, and (ii) experimental arm -- total dose 0.6 Gy in single fractions of 0.1 Gy applied twice-weekly (acting as a placebo).  Patients aged over 40 years who have been diagnosed clinically and radiologically to be suffering from plantar fasciitis for at least 6 months can be included.  Former trauma, surgery or radiotherapy to the heel are not allowed nor are patients with a severe psychiatric disease or women during pregnancy and breast-feeding.  According to the statistical power calculation, 100 patients have to be enrolled into each arm.  After having obtaining a written informed consent a patient is randomized by the statistician to one of the arms mentioned above.  After radiotherapy, patients are seen first every 6 weeks, then regularly up to 48 months after therapy; they additionally receive a questionnaire every 6 weeks after the follow-up examinations.  The effect is measured using several target variables (scores): Calcaneodynia-score according to Rowe et al, SF-12 score, and VAS of pain.  The most important endpoint is the pain relief 3 months after therapy.  Patients with an inadequate result are offered a second radiotherapy series applying the standard dose (equally in both arms).  This trial protocol has been approved by the expert panel of the DEGRO as well as by the Ethics committee of the Saarland Physicians' Chamber.

Drilling and microfracture of the subchondral bone are techniques used to stimulate the intrinsic repair (fibro-cartilage) process for injured/defective articular cartilage.  However, there is a lack of evidence regarding the effectiveness of drilling or microfracture in the treatment of plantar fasciitis.

In a multi-center randomized clinical trial, Cleland and colleagues (2009) compared the effectiveness of 2 different conservative management approaches in the treatment of plantar heel pain.  Patients with a primary report of plantar heel pain underwent a standard evaluation and completed a number of patient self-report questionnaires, including the Lower Extremity Functional Scale (LEFS), the Foot and Ankle Ability Measure (FAAM), and the Numeric Pain Rating Scale (NPRS).  Patients were randomly assigned to be treated with either an electrophysical agents and exercise (EPAX) or a manual physical therapy and exercise (MTEX) approach.  Outcomes of interest were captured at baseline and at 4-week and 6-month follow-ups.  The primary aim (effects of treatment on pain and disability) was examined with a mixed-model analysis of variance (ANOVA).  The hypothesis of interest was the 2-way interaction (group by time).  A total of 60 subjects (mean [SD] age, 48.4 [8.7] years) satisfied the eligibility criteria, agreed to participate, and were randomized into the EPAX (n = 30) or MTEX group (n = 30).  The overall group-by-time interaction for the ANOVA was statistically significant for the LEFS (p = 0.002), FAAM (p = 0.005), and pain (p = 0.043).  Between-group differences favored the MTEX group at both 4-week (difference in LEFS, 13.5; 95 % confidence interval [CI]: 6.3 to 20.8) and 6-month (9.9; 95 % CI: 1.2 to 18.6) follow-ups.  The authors concluded that the results of this study provided evidence that MTEX is a superior management approach over an EPAX approach in the management of individuals with plantar heel pain at both the short- and long-term follow-ups.

Rompe et al (2010) tested the null hypothesis of no difference in the effectiveness of plantar fascia-specific stretching and shock-wave therapy for patients who had unilateral plantar fasciopathy for a maximum duration of 6 weeks and which had not been treated previously.  A total of 102 patients with acute plantar fasciopathy were randomly assigned to perform an 8-week plantar fascia-specific stretching program (group I, n = 54) or to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for 3 weeks (group II, n = 48).  All patients completed the 7-item pain subscale of the validated Foot Function Index and a patient-relevant outcome questionnaire.  Patients were evaluated at baseline and at 2, 4, and 15 months after baseline.  The primary outcome measures were a mean change in the Foot Function Index sum score at 2 months after baseline, a mean change in item 2 (pain during the first few steps of walking in the morning) on this index, and satisfaction with treatment.  No difference in mean age, sex, weight, or duration of symptoms was found between the groups at baseline.  At 2 months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with plantar fascia-specific stretching than for those managed with shock-wave therapy (p < 0.001), as well as individually for item 2 (p = 0.002).  Thirty-five patients (65 %) in group I versus 14 patients (29 %) in group II were satisfied with the treatment (p < 0.001).  These findings persisted at 4 months.  At 15 months after baseline, no significant between-group difference was measured.  The authors concluded that a program of manual stretching exercises specific to the plantar fascia is superior to repetitive low-energy radial shock-wave therapy for the treatment of acute symptoms of proximal plantar fasciopathy.

In a pilot study, Dogramaci et al (2010) examined the clinical efficacy of intracorporeal pneumatic shock therapy (IPST) application for the treatment of chronic plantar fasciitis using a pneumatic lithotripter.  A total of 50 patients with clinically and radiologically confirmed plantar fasciitis were randomly allocated to either an active (treatment) (n = 25) or inactive (placebo) (n = 25) group.  Under local anesthesia and posterior tibial nerve block, a rigid probe was directly introduced into the calcaneal spur under fluoroscopic control; a standard protocol of 1,000 shocks was applied during a single session into the calcaneal spur.  The main outcome measure was patients' subjective assessment of pain by means of a VAS and the Roles and Maudsley Score before the treatment and 6 months later.  At the 6 months, the rate of successful outcomes (excellent + good results) in the treatment group (92 %) were significantly higher comparing to the control group (24 %) (p < 0.001).  Heel pain measured 6 months after using the VAS were 2.04 +/- 1.67 in the treatment group and 7.16 +/- 1.57 in the control group as compared to 8.92 +/- 1.22 and 9.12 +/- 1.23, respectively before the commencement of the treatment.  No complications attributable to the procedure such as rupture of the planter fascia, hematoma, or infection were observed during the study.  The authors concluded that these findings showed that IPST is a safe and effective method in the treatment of patients with chronic plantar fasciitis not responding to conservative measures.  It should be considered before surgical intervention when ESWT is not available for daily practice.  Moreover, they stated that further evaluation of this novel treatment is necessary to understand the exact mechanism of action.

Peerbooms et al (2010) described the design of a multi-center randomized controlled trial to study the use of platelet rich plasma in the treatment of plantar fasciitis.  The study population consists of 120 patients aged 18 years and older.  Patients with chronic plantar fasciitis will be allocated randomly to have a steroid injection or an autologous platelet concentrate injections.  Data will be collected before the procedure, 4, 8, 12, 26 weeks and 1 year after the procedure.  The main outcome measures of this study are pain and function measured with questionnaires.

Cotchett et al (2011) described the design of a randomized controlled trial to evaluate the effectiveness of dry needling for plantar heel pain.  A total of 80 community-dwelling men and woman aged over 18 years with plantar heel pain (who satisfy the inclusion and exclusion criteria) will be recruited.  Eligible participants with plantar heel pain will be randomized to receive either 1 of 2 interventions, (i) real dry needling, or (ii) sham dry needling.  The protocol (including needling details and treatment regimen) was formulated by general consensus (using the Delphi research method) using 30 experts worldwide that commonly use dry needling for plantar heel pain.  Primary outcome measures will be the pain subscale of the Foot Health Status Questionnaire and "first step" pain as measured on a VAS.  The secondary outcome measures will be health-related quality of life (assessed using the Short Form-36 questionnaire - Version Two) and depression, anxiety and stress (assessed using the Depression, Anxiety and Stress Scale - short version).  Primary outcome measures will be performed at baseline, 2, 4, 6 and 12 weeks and secondary outcome measures will be performed at baseline, 6 and 12 weeks.  Data will be analyzed using the intention-to-treat principle.  The authors concluded that this study is the first randomized controlled trial to evaluate the effectiveness of dry needling for plantar heel pain.  The trial will be reported in accordance with the Consolidated Standards of Reporting Trials and the Standards for Reporting Interventions in Clinical Trials of Acupuncture guidelines.  The findings from this trial will provide evidence for the effectiveness of trigger point dry needling for plantar heel pain.

Zhang et al (2011) examine the efficacy of botulinum toxin type A (BoNTA) in reducing chronic musculoskeletal pain.  Studies for inclusion in this report were identified using MEDLINE, EMBASE, PUBMED, Cochrane Central Register of Controlled Trials, CINAHL, and reference lists of relevant articles.  Studies were considered eligible for inclusion if they were randomized controlled trials (RCTs), evaluating the efficacy of BoNTA injections in pain reduction.  All studies were assessed and data were abstracted independently by paired reviewers.  The outcome measures were baseline and final pain scores as assessed by the patients.  The internal validity of trials was assessed with the Jadad scale.  Disagreements were resolved through discussions.  A total of 21 studies were included in the systematic review and 15 of them were included in the final meta-analysis.  There was a total of 706 patients in the meta-analysis, represented from trials of plantar fasciitis (n = 1), tennis elbow (n = 2), shoulder pain (n = 1), whiplash (n = 3), and myofascial pain (n = 8).  Overall, there was a small to moderate pain reduction among BoNTA patients when compared to control (SMD = -0.27, 95 % CI: -0.44 to -0.11).  When the results were analyzed in subgroups, only tennis elbow (SMD = -0.44, 95 % CI: -0.86 to -0.01) and plantar fasciitis (SMD = -1.04, 95 % CI: -1.68 to -0.40) demonstrated significant pain relief.  Although not in the meta-analysis, 1 back pain study also demonstrated positive results for BoNTA.  Lastly, BoNTA was effective when used at greater than or equal to 25 units per anatomical site or after a period greater than or equal to 5 weeks.  In this meta-analysis, BoNTA had a small to moderate analgesic effect in chronic musculoskeletal pain conditions.  It was particularly effective in plantar fasciitis, tennis elbow, and back pain, but not in whiplash or shoulder pain patients.  However, more evidence is required before definitive conclusions can be drawn.  On the other hand, there is convincing evidence that BoNTA lacks strong analgesic effects in patients with myofascial pain syndrome.

Diaz-Llopis et al (2012) examined the effectiveness of BoNTA in chronic plantar fasciitis compared to the local injection of a corticosteroid plus local anesthetic.  Patients with a clinical diagnosis of plantar fasciitis made at least 6 months earlier were selected to enter a randomized, single-blind study of treatment with injections of botulinum toxin type A or corticosteroid.  There were 28 patients in each treatment group.  Patients were evaluated at 1 month using the Foot Health Square Questionnaire and those with no clinical response subsequently received a 2nd injection with the drug of the other arm of the study, creating 2 new treatment groups.  Re-evaluation was performed at 6 months.  One month after injection there was a clear clinical improvement in both treatment groups but it was greater in the botulinum toxin group, with a significant difference for the pain item (p = 0.069), though not in other items.  At 6 months, patients treated with botulinum toxin type A had continued to improve in all items, whereas the corticosteroid group lost part of the improvement achieved at 1 month (improvement with botulinum toxin versus corticosteroid: pain 19.10/-6.84 (p = 0.001), function 16.00/-8.80 (p < 0.001), footwear 13.48/-7.95 (p = 0.004), self-perceived foot health 25.44/-5.41 (p < 0.001).  The authors concluded that BoNTA should be considered for the treatment of chronic plantar fasciitis in view of the improvement found at 1 month, and particularly at 6 months, when this treatment clearly has better results than corticosteroid injections.  They stated that further studies with larger samples are necessary to confirm these results.

In a double-blind, multi-center, randomized, placebo-controlled study, Brook et al (2012) evaluated the clinical value of pulsed radiofrequency electromagnetic field (PREF) therapy as a potential novel treatment of plantar fasciitis.  A small, wearable, extended-use PRFE device was employed in this study.  A total of 70 subjects diagnosed with plantar fasciitis were enrolled in the present study.  The subjects were randomly assigned a placebo or active PRFE device.  Subjects were instructed to wear the PRFE device over-night, record their morning and evening pain using a 0- to 10-point VAS, and log any medication use.  The primary outcome measure for the present study was morning pain, a hallmark of plantar fasciitis.  The study group using the active PRFE device showed progressive decline in morning pain.  The day 7 AM-VAS score was 40 % lower than the day 1 AM-VAS score.  The control group, in comparison, showed a 7 % decline.  A significantly different decline was demonstrated between the 2 groups (p = 0.03).  The PM-VAS scores declined by 30 % in the study group compared to 19 % in the control group, although the difference was non-significant.  Medication use in the study group also showed a trend downward, but the use in the control group remained consistent with the day 1 levels.  The authors concluded that PRFE therapy worn on a nightly basis appears to offer a simple, drug-free, non-invasive therapy to reduce the pain associated with plantar fasciitis.  The findings of this study need to be validated by further investigations especially since there were no significant differences in VAS score between the study and control groups.

The National Institute for Health and Clinical Excellence assessment on “Autologous blood injection for plantar fasciitis” (NICE, 2013) concluded that “The evidence on autologous blood injection for plantar fasciitis raises no major safety concerns.  The evidence on efficacy is inadequate in quantity and quality.  Therefore, this procedure should only be used with special arrangements for clinical governance, consent and audit or research . . . .  NICE encourages further research comparing autologous blood injection (with or without techniques to produce platelet-rich plasma) against established treatments for managing plantar fasciitis.  Trials should clearly describe patient selection, including duration of symptoms and any prior treatments.  Outcomes should include specific measures of pain and function”.

 
CPT Codes / HCPCS Codes / ICD-9 Codes
CPT codes covered if selection criteria are met:
29893
CPT codes not covered for indications listed in the CPB:
0019T
0232T
20552
20553
28890
64642 - 64645
77401 - 77421
Other CPT codes related to the CPB:
28008
28060
28062
28250
HCPCS codes not covered for indications listed in the CPB:
E0761 Non-thermal pulsed high frequency radiowaves, high peak power electromagnetic energy treatment device
E0769 Electrical stimulation or electromagnetic wound treatment device, not otherwise classified
J0585 Injection, onabotulinumtoxina A, 1 unit
J0586 Injection, abolotulinumtoxina A, 5 units
J0587 Injection, rimabotulinumtoxin B, 100 units
J0588 Injection, incobotulinumtoxin A, 1 unit
P9020 Platelet rich plasma, each unit
Other HCPCS codes related to the CPB:
A4570 Splint
L3000 - L3265 Orthopedic shoes
L3300 - L3649 Shoe modifications
L4350 - L4398 Splint, ankle, foot, leg
S8451 Splint, prefabricated, wrist or ankle
ICD-9 codes covered if selection criteria are met:
726.73 Calcaneal spur
728.71 Plantar fascial fibromatosis


The above policy is based on the following references:
  1. Barrett SL, Day SV. Endoscopic plantar fasciotomy for chronic plantar fasciitis/heel spur syndrome: Surgical technique - Early clinical results. J Foot Ankle Surg. 1991;30:568-570.  
  2. Barrett SL, Day SV. Endoscopic plantar fasciotomy: Two portal endoscopic surgical techniques - Clinical results of 65 procedures. J Foot Ankle Surg. 1993;32:248-256.  
  3. Barrett SL, Day SV, Pignetti TT, Robinson LB. Endoscopic plantar fasciotomy: A multi-surgeon prospective analysis of 652 cases. J Foot Ankle Surg. 1995;34(4):400-406.  
  4. Tomczak RL, Haverstock BD. A retrospective comparison of endoscopic plantar fasciotomy to open plantar fasciotomy with heel spur resection for chronic plantar fasciitis/heel spur syndrome. J Foot Ankle Surg. 1995;34(30):305-311. 
  5. Stone PA, McClure LP. Retrospective review of endoscopic plantar fasciotomy. 1994 through 1997. J Am Podiatr Med Assoc. 1999;89(2):89-93.  
  6. Brekke MK, Green DR. Retrospective analysis of minimal-incision, endoscopic, and open procedures for heel spur syndrome. J Am Podiatr Med Assoc. 1998;88(2):64-72.  
  7. Stone PA, Davies JL. Retrospective review of endoscopic plantar fasciotomy--1992 through 1994. J Am Podiatr Med Assoc. 1996;86(9):414-420.  
  8. Wander DS. A retrospective comparison of endoscopic plantar fasciotomy to open plantar fasciotomy with heel spur resection for chronic plantar fasciitis/heel spur syndrome. J Foot Ankle Surg. 1996;35(2):183-184.  
  9. Landsman A. Endoscopic plantar fasciotomy: A multi-surgeon prospective analysis of 652 cases. J Foot Ankle Surg. 1996;35(1):86.  
  10. Barrett SL. Endoscopic plantar fasciotomy. Clin Podiatr Med Surg. 1994;11(3):469-481.  
  11. Wander DS. Endoscopic plantar fasciotomy versus traditional heel spur surgery. J Foot Ankle Surg. 1994;33(3):322.  
  12. Kinley S, Frascone S, Calderone D, et al. Endoscopic plantar fasciotomy versus traditional heel spur surgery: A prospective study. J Foot Ankle Surg. 1993;32(6):595-603. 
  13. Basford JR, Malanga GA, Krause DA, Harmsen WS. A randomized controlled evaluation of low-intensity laser therapy: Plantar fasciitis. Arch Phys Med Rehab. 1998;79(3):249-254.  
  14. Seegenschmiedt MH, Keilholz L, Katalinic A, et al. Heel spur: Radiation therapy for refractory pain - Results with three treatment concepts. Radiology. 1996;200(1):271-276.  
  15. Sollitto RJ, Plotkin EL, Klein PG, Mullin P. Early clinical results of the use of radiofrequency lesioning in the treatment of plantar fasciitis. J Foot Ankle Surg. 1997;36(3):215-219; discussion 256.  
  16. U.S. Department of Health and Human Services, Food and Drug Administration (FDA), Center for Device Evaluation and Research (CDER). PMA for HealthTronics Ossatron. Orthopedics and Rehabilitation Devices Advisory Committee Transcript. Gaithersburg, MD: FDA; July 20, 2000. Available at: http://www.fda.gov/ohrms/dockets/ac/00/transcripts/3633t1.rtf. Accessed December 18, 2000.
  17. Hammer DS, Rupp S, Ensslin S, et al. Extracorporeal shock wave therapy in patients with tennis elbow and painful heel. Arch Orthop Trauma Surg. 2000;120:304-307.  
  18. Atkins D, Crawford F, Edwards J, et al. A systematic review of treatments for the painful heel. Rheumatology. 1999;38:968-973.  
  19. Speed CA, Nichols DW, Wies J, et al. Extracorporeal shock wave therapy for plantar fasciitis. A double blind randomised controlled trial. J Orthop Res.  2003;21(5):937-940.  
  20. Probe RA, Baca M, Adams R, et al. Night splint treatment for plantar fasciitis. Clin Orthop. 1999;368;191-195.
  21. Ogden JA, Alvarez R, Levitt R, et al. Shock wave therapy for chronic proximal plantar fasciitis. Clin Orthop. 2001;387:47-59.  
  22. U.S. Food and Drug Administration (FDA). Summary of Safety and Effectiveness Data. Dornier Epos Ultra. PMA No. P000048. Rockville, MD: FDA; January 15, 2002.
  23. Henney JE. From the Food and Drug Administration. JAMA. 2000;284(21):2711. 
  24. Ogden JA, Alvarez RG, Marlow M. Shockwave therapy for chronic proximal plantar fasciitis: A meta-analysis. Foot Ankle Int. 2002;23(4):301-308.
  25. Hammer DS, Rupp S, Kreutz A, et al. Extracorporeal shockwave therapy (ESWT) in patients with chronic proximal plantar fasciitis. Foot Ankle Int. 2002;23(4):309-313.
  26. Alvarez R. Preliminary results on the safety and efficacy of the OssaTron for treatment of plantar fasciitis. Foot Ankle Int. 2002;23(3):197-203.
  27. Wang CJ, Chen HS, Huang TW. Shockwave therapy for patients with plantar fasciitis: A one-year follow-up study. Foot Ankle Int. 2002;23(3):204-207. 
  28. Weil LS Jr, Roukis TS, Weil LS, et al. Extracorporeal shock wave therapy for the treatment of chronic plantar fasciitis: Indications, protocol, intermediate results, and a comparison of results to fasciotomy. J Foot Ankle Surg. 2002;41(3):166-172.
  29. Buchbinder R, Ptasznik R, Gordon J, et al. Ultrasound-guided extracorporeal shock wave therapy for plantar fasciitis: A randomized controlled trial. JAMA. 2002;288(11):1364-1372.
  30. Ham PS, Strayer S. Shock wave therapy ineffective for plantar fasciitis. J Fam Pract. 2002;51(12):1017.
  31. Landorf K, Menz HB. Plantar heel pain and fasciitis. In: BMJ Clinical Evidence. London, UK: BMJ Publishing Group; January 2007.
  32. Rajkumar P, Schmitgen GF. Shock waves do more than just crush stones: Extracorporeal shock wave therapy in plantar fasciitis.  Int J Clin Pract. 2002;56(10):735-737.
  33. Crawford F, Thomson C. Interventions for treating plantar heel pain. Cochrane Database Syst Rev. 2010;(1):CD000416.
  34. Washington State Department of Labor and Industries, Office of the Medical Director. Extracorporeal shockwave therapy for the treatment of musculoskeletal disorders. Technology Assessment. Olympia, WA: Washington State Department of Labor and Industries; January 27, 2003. Available at: http://www.lni.wa.gov/omd/TechAssessDocs.htm. Accessed August 7, 2003.
  35. Haake M, Buch M, Schoellner C, et al. Extracorporeal shock wave therapy for plantar fasciitis: Randomised controlled multicentre trial. BMJ. 2003;327(7406):75.
  36. BlueCross BlueShield Association (BCBSA), Technology Evaluation Center (TEC). Extracorporeal shock wave therapy for treatment of musculoskeletal indications. TEC Assessment Program. Chicago, IL: BCBSA; 2002;16(20).
  37. BlueCross BlueShield Association (BCBSA), Technology Evaluation Center (TEC). Extracorporeal shock wave therapy (ESWT) for musculoskeletal indications. TEC Assessment Program. Chicago, IL: BCBSA; August 2003;18(5). Available at: http://www.bcbs.com/tec/vol18/18_05.html. Accessed April 23, 2004.
  38. Buchbinder R. Clinical practice. Plantar fasciitis. N Engl J Med. 2004;350(21):2159-2166.
  39. Boddeker IR, Schafer H, Haake M. Extracorporeal shockwave therapy (ESWT) in the treatment of plantar fasciitis: A biometrical review. Clin Rheumatol. 2001;20(5):324-330.
  40. Ogden JA, Alvarez RG, Levitt RL, et al. Electrohydraulic high-energy shock-wave treatment for chronic plantar fasciitis. J Bone Joint Surg Am. 2004;86-A(10):2216-2228.
  41. Theodore GH, Buch M, Amendola A, et al. Extracorporeal shock wave therapy for the treatment of plantar fasciitis. Foot Ankle Int. 2004;25(5):290-297.
  42. Institute for Clinical Systems Improvement (ICSI). Extracorporeal shock wave therapy for plantar fasciitis. ICSI Technology Assessment Report No.86.Bloomington,MN:ICSI;November2004. Available at: http://www.icsi.org/knowledge/detail.asp?catID=107&itemID=1926. Accessed December 1, 2004.
  43. Ruano-Ravina A. Extracorporeal shock-wave treatment in orthopedics and rehabilitation. Update (Technical report) [summary]. CT2004/04. Santiago de Compostela, Spain: Galician Agency for Health Technology Assessment (AVALIA-T); 2004.
  44. BlueCross BlueShield Association (BCBSA), Technology Evaluation Center (TEC). Extracorporeal shock wave treatment for chronic plantar fasciitis. TEC Assessment Program. Chicago, IL: BCBSA; March 2005;19(18). Available at: http://www.bcbs.com/tec/vol19/19_18.html. Accessed March 22, 2005.
  45. Tice JA. Extracorporeal shock wave therapy (ESWT) for musculoskeletal disorders. Technology Assessment. San Francisco, CA: California Technology Assessment Forum (CTAF); June 9, 2004. Available at: http://ctaf.org/ass/viewfull.ctaf?id=32362336391. Accessed March 21, 2005.
  46. Burton A, Overend TJ. Low-energy extracorporeal shock wave therapy: A critical analysis of the evidence for effectiveness in the treatment of plantar fasciitis. Phys Ther Rev. 2005;10(3):152-162.
  47. Kudo P, Dainty K, Clarfield M, et al. A randomized, placebo-controlled, double-blind clinical trial evaluating the treatment of plantar fasciitis with an extracorporeal shockwave therapy (ESWT) device; A North American confirmatory study. J Orthopaed Res. 2006;24:115-123.
  48. Porter MD, Shadbolt B. Intralesional corticosteroid injection versus extracorporeal shock wave therapy for plantar fasciopathy. Clin J Sport Med. 2005;15(3):119-124.
  49. Trebinjac S, Mujic-Skikic E, Ninkovic M, Karaikovic E. Extracorporeal shock wave therapy in orthopaedic diseases. Bosn J Basic Med Sci. 2005;5(2):27-32.
  50. National Institute for Health and Clinical Excellence (NICE). Extracorporeal shockwave therapy for refractory tendinopathies (plantar fasciitis and tennis elbow). Interventional Procedure Guidance 139. London, UK: NICE: November 2005. Available at: http://www.nice.org.uk/page.aspx?o=279998. Accessed December 1, 2005.
  51. Thomson CE, Crawford F, Murray GD. The effectiveness of extra corporeal shock wave therapy for plantar heel pain: A systematic review and meta-analysis. BMC Musculoskeletal Disorders. 2005;6(10).
  52. Seil R, Wilmes P, Nuhrenborger C. Extracorporeal shock wave therapy for tendinopathies. Expert Rev Med Devices. 2006;3(4):463-470.
  53. Ho C. Extracorporeal shock wave treatment for chronic plantar fasciitis (heel pain). Issues in Emerging Health Technologies. Issue 96, Part 1. Ottawa, ON: Canadian Agency for Drugs and Technologies in Health (CADTH); 2007. Available at: http://www.cadth.ca/media/pdf/E0009_chronic-plantar-fasciitis-part1_cetap_e.pdf. Accessed March 7, 2007.
  54. Allen BH, Fallat LM, Schwartz SM. Cryosurgery: An innovative technique for the treatment of plantar fasciitis. J Foot Ankle Surg. 2007;46(2):75-79.
  55. Gollwitzer H, Diehl P, von Korff A, et al. Extracorporeal shock wave therapy for chronic painful heel syndrome: A prospective, double blind, randomized trial assessing the efficacy of a new electromagnetic shock wave device. J Foot Ankle Surg. 2007;46(5):348-357.
  56. California Technology Assessment Forum (CTAF). Extracorporeal shock-wave therapy (ESWT) for plantar fasciitis not responding to conservative therapy. A Technology Assessment. San Francisco, CA: CTAF; June 20, 2007. Available at: http://www.ctaf.org/content/general/detail/739. Accessed February 21, 2008.
  57. Tornese D, Mattei E, Lucchesi G, et al. Comparison of two extracorporeal shock wave therapy techniques for the treatment of painful subcalcaneal spur. A randomized controlled study. Clin Rehabil. 2008;22(9):780-787.
  58. Gerdesmeyer L, Frey C, Vester J, et al. Radial extracorporeal shock wave therapy is safe and effective in the treatment of chronic recalcitrant plantar fasciitis: Results of a confirmatory randomized placebo-controlled multicenter study. Am J Sports Med. 2008;36(11):2100-2109.
  59. Marks W, Jackiewicz A, Witkowski Z, et al. Extracorporeal shock-wave therapy (ESWT) with a new-generation pneumatic device in the treatment of heel pain. A double blind randomised controlled trial. Acta Orthop Belg. 2008;74(1):98-101.
  60. Niewald M, Seegenschmiedt MH, Micke O, Gräber S; German Cooperative Group on the Radiotherapy for Benign Diseases of the DEGRO German Society for Radiation Oncology. Randomized multicenter trial on the effect of radiotherapy for plantar Fasciitis (painful heel spur) using very low doses -- a study protocol. Radiat Oncol. 2008;3:27.
  61. Cleland JA, Abbott JH, Kidd MO, et al. Manual physical therapy and exercise versus electrophysical agents and exercise in the management of plantar heel pain: A multicenter randomized clinical trial. J Orthop Sports Phys Ther. 2009;39(8):573-585.
  62. Tice JA. Extracorporeal shock wave therapy (ESWT) for plantar fasciitis not responding to conservative therapy. A Technology Assessment. San Francisco, CA: California Technology Assessment Forum (CTAF); October 28. 2009.
  63. Rompe JD, Cacchio A, Weil L Jr, et al. Plantar fascia-specific stretching versus radial shock-wave therapy as initial treatment of plantar fasciopathy. J Bone Joint Surg Am. 2010;92(15):2514-2522.
  64. Dogramaci Y, Kalaci A, Emir A, et al. Intracorporeal pneumatic shock application for the treatment of chronic plantar fasciitis: A randomized, double blind prospective clinical trial. Arch Orthop Trauma Surg. 2010;130(4):541-546.
  65. Peerbooms JC, van Laar W, Faber F, et al. Use of platelet rich plasma to treat plantar fasciitis: Design of a multi centre randomized controlled trial. BMC Musculoskelet Disord. 2010;11:69.
  66. de Vos RJ, van Veldhoven PL, Moen MH, et al. Autologous growth factor injections in chronic tendinopathy: A systematic review. Br Med Bulletin. 2010;95(1):63-77.
  67. Cotchett MP, Landorf KB, Munteanu SE, Raspovic A. Effectiveness of trigger point dry needling for plantar heel pain: Study protocol for a randomised controlled trial. J Foot Ankle Res. 2011;4:5.
  68. Zhang T, Adatia A, Zarin W, et al. The efficacy of botulinum toxin type A in managing chronic musculoskeletal pain: A systematic review and meta analysis. Inflammopharmacology. 2011;19(1):21-34.
  69. Diaz-Llopis IV, Rodriguez-Ruiz CM, Mulet-Perry S, et al. Randomized controlled study of the efficacy of the injection of botulinum toxin type A versus corticosteroids in chronic plantar fasciitis: Results at one and six months. Clin Rehabil. 2012;26(7):594-606.
  70. Brook J, Dauphinee DM, Korpinen J, Rawe IM. Pulsed radiofrequency electromagnetic field therapy: A potential novel treatment of plantar fasciitis. J Foot Ankle Surg. 2012;51(3):312-316.
  71. National Institute for Health and Clinical Excellence (NICE). Autologous blood injection for plantar fasciitis. Interventional Procedure Guidance 437. London, UK: NICE; January 2013.


email this page   


Copyright Aetna Inc. All rights reserved. Clinical Policy Bulletins are developed by Aetna to assist in administering plan benefits and constitute neither offers of coverage nor medical advice. This Clinical Policy Bulletin contains only a partial, general description of plan or program benefits and does not constitute a contract. Aetna does not provide health care services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Aetna or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. This Clinical Policy Bulletin may be updated and therefore is subject to change.
Aetna
Back to top